A lower bound for Cusick’s conjecture on the digits of n + t

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

Abstract

Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density 'Equation Presented' T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1; however, no bound of the form 0 < α ≤ ct or ct ≤ ß < 1, valid for all t, is known. In this paper, we prove that ct > 1/2 - ∈ as soon as t contains sufficiently many blocks of 1s in its binary expansion. In the proof, we provide estimates for the moments of an associated probability distribution; this extends the study initiated by Emme and Prikhod'ko (2017) and pursued by Emme and Hubert (2018).

OriginalspracheEnglisch
Seiten (von - bis)139-161
Seitenumfang23
FachzeitschriftMathematical proceedings of the Cambridge Philosophical Society
Jahrgang172.2022
Ausgabenummer1
Frühes Online-Datum24 Feb. 2021
DOIs
PublikationsstatusVeröffentlicht - Jan. 2022

Bibliographische Notiz

Publisher Copyright:
© 2021 The Author(s). Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

Dieses zitieren