Agglomerating behavior of in-situ TiB2 particles and strength-ductility synergetic improvement of in-situ TiB2p/7075Al composites through ultrasound vibration

Yihong Wu, Linwei Li, Huijun Kang, Enyu Guo, Jiehua LI, Guohao Du, Zongning Chen, Tongmin Wang

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

Abstract

Agglomerates of in-situ particles are the key detrimental defects in particulate reinforced aluminum matrix composites (PRAMCs) by acting as Achilles' heel leading to the premature failure of the materials. Effective methods to disperse/eliminate these agglomerates rely on in-depth understanding of the agglomeration mechanism of the in-situ particles. In this work, the agglomerating behavior of TiB 2 particles in Al-Ti-B system was investigated through the thermit reactions between mixed fluorides and molten aluminum. The results indicate that the morphological patterns of TiB 2 agglomerates are inherited from the preformed Al 3Ti intermedium. The formation of flocculent, shell and flaky TiB 2 agglomerates are the results of the diffusing boron atoms continuously reacting with Al 3Ti. The in-situ Al-TiB 2 was used as a precursor to prepare TiB 2p/7075 Al composites. In particular, ultrasound vibration treatment was applied to explore if a locally forced oscillation can deagglomerate the TiB 2 agglomerates. Microstructural observations strongly support such speculation. Thanks to the deagglomeration and dispersion of TiB 2 particles, both the strength and ductility of the PRAMC have been improved drastically. The fracture surface of the composites was transformed from particle debonding to the dominance of ductile fracture.

OriginalspracheEnglisch
Aufsatznummer113652
Seitenumfang10
FachzeitschriftMaterials characterization
Jahrgang208.2024
AusgabenummerFebruary
DOIs
PublikationsstatusVeröffentlicht - Feb. 2024

Bibliographische Notiz

Publisher Copyright:
© 2024

Dieses zitieren