An ab initio study of vacancies in disordered magnetic systems: A Case Study of Fe-Rich Fe-Al Phases

Ivana Miháliková, Martin Friák, Nikola Koutná, David Holec, Mojmír Šob

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

8 Zitate (Scopus)

Abstract

We have performed quantum-mechanical calculations to examine the impact of disorder on thermodynamic, structural and electronic (magnetic) properties of Fe-Al systems with vacancies. A series of supercells was used and their properties were computed employing density-functional theory (DFT) as implemented in the VASP package. Our case study is primarily aimed at a disordered solid solution Fe 81.25Al 18.75 but we have compared our results also with those obtained for the ordered Fe 3Al intermetallic compound for which experimental data exist in literature. Both phases are found in Fe-Al-based superalloys. The Fe-18.75at.%Al solid solution was simulated using special quasirandom structures (SQS) in three different disordered states with a different distribution of Al atoms. In particular, we have considered a general disordered case (an A2-like variant), the case without the first nearest neighbor Al-Al pairs (a B2-like distribution of atoms) and also the case without both the first and second nearest neighbor Al-Al pairs (the D0 3-like variant, in fact, an Fe-rich Fe 3Al phase). The vacancy formation energies as well as the volumes of (fully relaxed) supercells with vacancies showed a large scatter for the disordered systems. The vacancy formation energies decrease with increasing concentration of Al atoms in the first coordination shell around the vacancy (an anti-correlation) for all disordered cases studied. The computed volumes of vacancies were found significantly lower (by 25-60%) when compared with the equilibrium volume of the missing atoms in their elemental states. Lastly, we have analyzed interactions between the vacancies and the Fe atoms and evaluated vacancy-induced changes in local magnetic moments of Fe atoms.

OriginalspracheEnglisch
Aufsatznummer1430
Seitenumfang16
FachzeitschriftMaterials
Jahrgang12.2019
Ausgabenummer9
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 2 Mai 2019

Dieses zitieren