Application of hybrid machine learning based quality control in daily site management

Alexander Zöhrer, Vincent Winter, Anika Terbuch, Paul O'Leary, Negin Khalilimotlaghkasmaei

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Konferenzband

Abstract

This paper presents a system that combines KPI with autoencoders to implement a hybrid machine learning system. The goal here is to investigate workflows which permit the site manager to use the hybrid machine learning systems as a decision support tool. The workflows are explained by means of case studies, demonstrating the application of the hybrid system to detect both element as well as site related quality issues. In addition to that, the detection of anomalies regarding execution efficiency assist the project manager to optimize the sequence of work on site.
OriginalspracheEnglisch
Titel Proceedings of the ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium
UntertitelChallenges in Rock Mechanics and Rock Engineering
ErscheinungsortSalzburg
Seiten569-574
Seitenumfang6
ISBN (elektronisch)978-3-9503898-3-8
PublikationsstatusVeröffentlicht - 9 Okt. 2023

Dieses zitieren