Digraphical Regular Representations of Infinite Finitely Generated Groups

Rögnvaldur G. Möller, Norbert Seifter

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

6 Zitate (Scopus)

Abstract

A directed Cayley graphXis called a digraphical regular representation (DRR) of a groupGif the automorphism group ofXacts regularly onX. LetSbe a finite generating set of the infinite cyclic groupZ. We show that a directed Cayley graphX(Z,S) is aDRRofZif and only ifS ≠ S−1. IfX(Z,S) is not aDRRwe show thatAut (X(Z,S)) = D∞. As a general result we prove that a Cayley graphXof a finitely generated torsion-free nilpotent groupNis aDRRif and only if no non-trivial automorphism ofNof finite order leaves the generating set invariant.
OriginalspracheEnglisch
Seiten (von - bis)597-602
Seitenumfang6
FachzeitschriftEuropean journal of combinatorics
Jahrgang19.1998
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - Juli 1998

Dieses zitieren