Abstract
A directed Cayley graphXis called a digraphical regular representation (DRR) of a groupGif the automorphism group ofXacts regularly onX. LetSbe a finite generating set of the infinite cyclic groupZ. We show that a directed Cayley graphX(Z,S) is aDRRofZif and only ifS ≠ S−1. IfX(Z,S) is not aDRRwe show thatAut (X(Z,S)) = D∞. As a general result we prove that a Cayley graphXof a finitely generated torsion-free nilpotent groupNis aDRRif and only if no non-trivial automorphism ofNof finite order leaves the generating set invariant.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 597-602 |
Seitenumfang | 6 |
Fachzeitschrift | European journal of combinatorics |
Jahrgang | 19.1998 |
Ausgabenummer | 5 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juli 1998 |