TY - JOUR
T1 - Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data
AU - Barbero, Edoardo
AU - Delavari, Morteza
AU - Dolati, Ashgar
AU - Vahedi, Leila
AU - Langone, Antonio
AU - Marroni, Michele
AU - Pandolfi, Luca
AU - Zaccarini, Federica
AU - Saccani, Emilio
PY - 2020/12/7
Y1 - 2020/12/7
N2 - The North Makran domain (southeast Iran) is part of the Makran accretionary wedge and consists of an imbricate stack of continental and Neo-Tethyan oceanic tectonic units. Among these, the Band-e-Zeyarat ophiolite consists of (from bottom to top): ultramafic cumulates, layered gabbros, isotropic gabbros, a sheeted dyke complex, and a volcanic sequence. Sheeted dykes and volcanic rocks are mainly represented by basalts and minor andesites and rhyolites showing either normal-type (N) or enriched-type (E) mid-ocean ridge basalt affinities (MORB). These conclusions are also supported by mineral chemistry data. In addition, E-MORBs can be subdivided in distinct subtypes based on slightly different but significant light rare earth elements, Th, Nb, TiO2, and Ta contents. These chemical differences point out for different partial melting conditions of their mantle sources, in terms of source composition, partial melting degrees, and melting depths. U-Pb geochronological data on zircons from intrusive rocks gave ages ranging from 122 to 129 Ma. We suggest that the Band-e-Zeyarat ophiolite represents an Early Cretaceous chemical composite oceanic crust formed in a mid-ocean ridge setting by partial melting of a depleted suboceanic mantle variably metasomatized by plume-type components. This ophiolite records, therefore, an Early Cretaceous plume–ridge interaction in the Makran Neo-Tethys.
AB - The North Makran domain (southeast Iran) is part of the Makran accretionary wedge and consists of an imbricate stack of continental and Neo-Tethyan oceanic tectonic units. Among these, the Band-e-Zeyarat ophiolite consists of (from bottom to top): ultramafic cumulates, layered gabbros, isotropic gabbros, a sheeted dyke complex, and a volcanic sequence. Sheeted dykes and volcanic rocks are mainly represented by basalts and minor andesites and rhyolites showing either normal-type (N) or enriched-type (E) mid-ocean ridge basalt affinities (MORB). These conclusions are also supported by mineral chemistry data. In addition, E-MORBs can be subdivided in distinct subtypes based on slightly different but significant light rare earth elements, Th, Nb, TiO2, and Ta contents. These chemical differences point out for different partial melting conditions of their mantle sources, in terms of source composition, partial melting degrees, and melting depths. U-Pb geochronological data on zircons from intrusive rocks gave ages ranging from 122 to 129 Ma. We suggest that the Band-e-Zeyarat ophiolite represents an Early Cretaceous chemical composite oceanic crust formed in a mid-ocean ridge setting by partial melting of a depleted suboceanic mantle variably metasomatized by plume-type components. This ophiolite records, therefore, an Early Cretaceous plume–ridge interaction in the Makran Neo-Tethys.
UR - http://www.scopus.com/inward/record.url?scp=85097366686&partnerID=8YFLogxK
U2 - 10.3390/min10121100
DO - 10.3390/min10121100
M3 - Article
SN - 2075-163X
VL - 10.2020
JO - Minerals
JF - Minerals
IS - 12
M1 - 1100
ER -