Abstract
Strontium segregation (coupled to phase decomposition and impurity poisoning) and electrode delamination are two of the most important degradation mechanisms currently limiting the long-term stability of solid oxide fuel cell and electrolysis cell (SOFC and SOEC) air electrodes. The present study aims to demonstrate that air electrodes made of entropy-stabilized multi-component oxides can mitigate these degradation mechanisms while providing excellent cell performance. A SOEC utilizing La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ (LPNSSC) as an air electrode delivers −1.56 A/cm2 at 1.2 V at 800°C. This performance exceeds that of a commercial cell with La0.6Sr0.4CoO3-δ (LSC) air electrode, which reaches −1.43 A/cm2. In a long-term electrolysis test, the LPNSSC cell shows stable performance during 700 h, while the LSC cell degrades continuously. Post-mortem analyses by scanning electron microscopy-energy dispersive X-ray spectroscopy indicate complete delamination of the LSC electrode, while LPNSSC shows excellent adhesion. The amount of secondary phases formed (esp. SrSO4) is also much lower in LPNSSC compared to LSC. In conclusion, the high-entropy perovskite LPNSSC is a promising option for air electrodes of solid oxide cells. While LPNSSC can compete with ‒ or even outperform ‒ LSC air electrodes in terms of electrochemical performance, it could be particularly advantageous in terms of long-term stability in SOEC mode.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 377-386 |
Seitenumfang | 10 |
Fachzeitschrift | Fuel Cells |
Jahrgang | 2023 |
Ausgabenummer | 6 |
DOIs | |
Publikationsstatus | Veröffentlicht - 27 Juli 2023 |
Bibliographische Notiz
Funding Information:Funding by “Zukunftsfonds Steiermark” within the program “NEXT GREEN TECH − Energy Systems, Green Hydrogen & Green Mobility”, project no. 1704, is gratefully acknowledged. We thank J. Woisik for the FESEM measurements.
Publisher Copyright:
© 2023 The Authors. Fuel Cells published by Wiley-VCH GmbH.