Enrichment of Integrated Steel Plant Process Gases with Implementation of Renewable Energy : Integration of power-to-gas and biomass gasification system in steel production

Ana Roza Medved, Markus Lehner, Daniel Rosenfeld, Johannes Lindorfer, Katharina Rechberger

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

1 Zitat (Scopus)


The steel industry is one of the most important industry sectors, but also one of the largest greenhouse gas emitters. The process gases produced in an integrated steel plant, blast furnace gas (BFG), basic oxygen furnace gas (BOFG) and coke oven gas (COG), are due to high shares of inert gas (nitrogen) in large part energy poor but also providing a potential carbon source (carbon monoxide and carbon dioxide) for the catalytic hydrogenation to methane by integration of a power-to-gas (P2G) plant. Furthermore, by interconnecting a biomass gasification, an additional biogenic hydrogen source is provided. Three possible implementation scenarios for a P2G and a biomass gasification plant, including mass and energy balances were analysed. The scenarios stipulate a direct conversion of BFG and BOFG resulting in high shares of nitrogen in the feed gas of the methanation. Laboratory experimental tests have shown that the methanation of BFG and BOFG is technically possible without prior separation of CO2. The methane-rich product gas can be utilised in the steel plant and substitutes for natural gas (NG). The implementation of these renewable energy sources results in a significant reduction of CO2 emissions between 0.81 million tonnes CO2eq and 4.6 million tonnes CO2eq per year. However, the scenarios are significantly limited in terms of available electrolysis plant size, renewable electricity and biomass.
Seiten (von - bis)453 - 465
FachzeitschriftJohnson Matthey Technology Review
PublikationsstatusVeröffentlicht - 29 Juni 2021

Bibliographische Notiz

Funding Information:
The research project “RenewableSteelGases” was carried out in cooperation with voestalpine Stahl GmbH; voestalpine Stahl Donawitz GmbH; K1-MET GmbH; TU Vienna, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), Energy Institute at JKU Linz and Montanuniversität Leoben, Chair of Process Engineering and Environmental Protection. The project was financed by the research programme “Energieforschungsprogramm 2016” funded by the Austrian “Klima-und Energiefonds” (28).

Publisher Copyright:
© 2021 Johnson Matthey Public Limited Company. All rights reserved.

Dieses zitieren