Evolution of the thermal conductivity of arc evaporated fcc-Ti1-x-yAlxTayN coatings with increasing Ta content

Helene Waldl, Michael Tkadletz, Markus Winkler, Birgit Großmann, Christoph Czettl, Markus Pohler, Nina Schalk

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

2 Zitate (Scopus)

Abstract

Hard coatings are commonly applied in severe cutting applications, where significant heat is generated. Thus, their thermal conductivity should be kept low to provide a heat barrier to the substrate and consequently to increase the service life time of the tools. Although, Ti 1-x-yAl xTa yN protective coatings have been applied successfully in the cutting industry, their thermal conductivity is barely investigated. The focus of this study is to determine the thermal conductivity of face-centered cubic (fcc)-Ti 1-x-yAl xTa yN coatings with a Ti/Al ratio of 1:1 and a Ta content increasing from 0 up to 23 at.%. The investigated coatings were deposited by cathodic arc evaporation to a coating thickness of 3.2 μm ± 0.4 μm. The microstructure and chemical composition were studied using X-ray diffraction and energy dispersive X-ray spectroscopy, respectively. Time-domain thermoreflectance measurements revealed a low thermal conductivity for fcc-Ti 1-xAl xN with 5.7 W/(mK) and a further decrease with increasing Ta content to 2.4 W/(mK) for 23 at.% Ta. This trend can be explained by the small grain size caused by the Al addition leading to increased boundary scattering and the incorporation of Al and larger Ta atoms in the fcc-TiN lattice resulting additionally in alloy scattering, as the thermal conductivity decreases with increasing phonon scattering processes.

OriginalspracheEnglisch
Aufsatznummer126658
Seitenumfang6
FachzeitschriftSurface & coatings technology
Jahrgang2021
Ausgabenummer406
Frühes Online-Datum19 Nov. 2020
DOIs
PublikationsstatusVeröffentlicht - 25 Jan. 2021

Bibliographische Notiz

Funding Information:
The authors want to thank Bernhard Sartory and Dr. Jaroslaw Wosik (Materials Center Leoben) for the FIB and SEM work. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged. This work was supported by the ?sterreichische Forschungsf?rderungsgesellschaft FFG (grant number 845255).

Funding Information:
The authors want to thank Bernhard Sartory and Dr. Jaroslaw Wosik (Materials Center Leoben) for the FIB and SEM work. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged. This work was supported by the Österreichische Forschungsförderungsgesellschaft FFG (grant number 845255 ).

Publisher Copyright:
© 2020 The Authors

Dieses zitieren