Abstract
The aim of this study was the preparation of different amorphous silicon–carbon hybrid thin-layer materials according to the liquid phase deposition (LPD) process using single-source precursors. In our study, 2-methyl-2-silyltrisilane (methylisotetrasilane; 2), 1,1,1-trimethyl-2,2-disilyltrisilane (trimethylsilylisotetrasilane; 3), 2-phenyl-2-silyltrisilane (phenylisotetrasilane; 4), and 1,1,2,2,4,4,5,5-octamethyl-3,3,6,6-tetrasilylcyclohexasilane (cyclohexasilane; 5) were utilized as precursor materials and compared with the parent compound 2,2-disilyltrisilane (neopentasilane; 1). Compounds 2–5 were successfully oligomerized at λ = 365 nm with catalytic amounts of the neopentasilane oligomer (NPO). These oligomeric mixtures (NPO and 6–9) were used for the preparation of thin-layer materials. Optimum solution and spin coating conditions were investigated, and amorphous silicon–carbon films were obtained. All thin-layer materials were characterized via UV/vis spectroscopy, light microscopy, spectroscopic ellipsometry, XPS, SEM, and SEM/EDX. Our results show that the carbon content and especially the bandgap can be easily tuned using these single-source precursors via LPD.
Titel in Übersetzung | HErstellung amorpher Silicium-Kohlenstoff-Hybridschichten mit Precursoren aus einer Quelle |
---|---|
Originalsprache | Englisch |
Seiten (von - bis) | 15490-15501 |
Seitenumfang | 12 |
Fachzeitschrift | Inorganic chemistry |
Jahrgang | 62.2023 |
Ausgabenummer | 38 |
DOIs | |
Publikationsstatus | Veröffentlicht - 12 Sept. 2023 |