Abstract
At present, sensor-based sorting machines are usually not operated at the optimal operation point but are either overrun or underrun depending on the availability of waste streams. Mathematical approaches for predefined ideal mixtures can be found based on the input stream composition and the throughput rate. This scientific article compares whether and under what conditions these approaches can be applied to sensor-based sorting machines. Existing data for predefined ideal mixtures are compared with newly generated data of real waste on three sensor-based sorting setups in order to make significant statements. Five samples of 3D plastics at regular intervals were taken in a processing plant for refuse-derived fuels. With the comparison of all these results, four hypotheses were validated, related to whether the same mathematical approaches can be transferred from ideal mixtures to real waste and whether they can be transferred to sensor-based sorting machines individually or depending on the construction type. The developed mathematical approaches are regression models for finding the optimal operation point to achieve a specific sensor-based sorting result in terms of purity and recovery. For a plant operator, the main benefit of the findings of this scientific article is that purity could be increased by 20% without substantially adapting the sorting plant.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 4266 |
Seitenumfang | 18 |
Fachzeitschrift | Polymers |
Jahrgang | 15.2023 |
Ausgabenummer | 21 |
DOIs | |
Publikationsstatus | Veröffentlicht - 30 Okt. 2023 |
Bibliographische Notiz
Funding Information:This research was funded by the Austrian Research Promotion Agency (FFG), project “Throughput Rate”, grant number 884559.
Publisher Copyright:
© 2023 by the authors.