Abstract
In this paper we show that the presence of liquid flow around a crystal growing from melt can induce dissymmetry in growth similar to that described by anisotropic interfacial kinetic coefficients. A front tracking interface model based on a cellular automaton approach was applied to the growth of a Fe2Al5 crystal (also known as top dross particle) in a saturated Zn melt at constant temperature. The growth rate was found to be influenced by the intensity of the melt flow and by the direction of the flow with respect to the crystal orientation. The magnitude and the direction of flow modify the diffusion boundary layer, changing the conditions (temperature and concentration) at the facet interface, therefore the mass transfer. We have shown that despite the isotropy of interfacial kinetics, hydrodynamics was able to introduce an anisotropy in the crystal growth similar to the natural anisotropy in interfacial kinetics of the facets. The facets grow rate was found to be strongly dependant on the Reynolds number as well as on the orientation of the crystalline orientation with respect to the flow direction.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 126557 |
Seitenumfang | 8 |
Fachzeitschrift | Journal of crystal growth |
Jahrgang | 584.2022 |
Ausgabenummer | 15 April |
DOIs | |
Publikationsstatus | Elektronische Veröffentlichung vor Drucklegung. - 31 Jan. 2022 |
Bibliographische Notiz
Funding Information:The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project No 859480). This program is supported by the Austrian Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and for Digital and Economic Affairs (BMDW), represented by the Austrian research funding association (FFG), and the federal states of Styria, Upper Austria and Tyrol.
Publisher Copyright:
© 2022