Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions

Lina Kieush, Andrii Koveria, Johannes Schenk, Kanay Rysbekov, Vasyl Lozynskyi, Heng Zheng, Azamat Matayev

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

Abstract

The coalification rank of the coal blend components and their caking properties initially impact the coke’s quality. In part, the quality of coke depends on the technological parameters of the coke production technology, such as the method of blend preparation, the coking condition, the design features of the coke ovens, and the technique used for post-oven treatment. Therefore, to improve the coke quality, the main attention is paid to the quality of the coal blend. The petrographic analysis is the simplest and most reliable way to control coal quality indicators under industrial conditions. In this paper, the effect of nine industrial blends on coke quality using petrographic analysis has been studied. Additionally, this paper addresses the efficient use of coals and the preparation of coal mixtures under industrial conditions, which contributes to the sustainability of cokemaking. For the preparation of blends, 17 coals were used, for which, in addition to petrographic and proximate analyzes, the maximum thickness of the plastic layer was determined. Industrially produced cokes were analyzed for coke reactivity index (CRI), coke strength after reaction with CO2 (CSR), and Micum indices (M25 and M10). It has been established that the petrographic properties of coal blends are reliable parameters for assessing the quality of coke under conditions of an unstable raw material base, multi-component blends, and changes in coking regimes. Moreover, the research results have shown that to ensure the rational use of coals in the preparation of coal blends to achieve the required coke quality and consequently the sustainability of cokemaking, it is necessary to consider not only the mean reflectance of vitrinite but the proximate and caking properties of coals.
OriginalspracheEnglisch
Aufsatznummer9947
Seitenumfang21
FachzeitschriftSustainability (Switzerland)
Jahrgang14.2022
Ausgabenummer16
DOIs
PublikationsstatusVeröffentlicht - 11 Aug. 2022

Bibliographische Notiz

Publisher Copyright:
© 2022 by the authors.

Dieses zitieren