Nanoindentation creep of supercrystalline nanocomposites

Cong Yan, Büsra Bor, Alexander Plunkett, Berta Domenech, Verena Maier-Kiener, Diletta Giuntini

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

Abstract

Supercrystalline nanocomposites (SCNCs) are inorganic-organic hybrid materials with a unique periodic nanostructure, and thus they have been gaining growing attention for their intriguing functional properties and parallelisms with hierarchical biomaterials. Their mechanical behavior remains, however, poorly understood, even though its understanding and control are important to allow SCNCs’ implementation into devices. An important aspect that has not been tackled yet is their time-dependent deformation behavior, which is nevertheless expected to play an important role in materials containing such a distribution of organic phase. Hereby, we report on the creep of ceramic-organic SCNCs with varying degrees of organic crosslinking, as assessed via nanoindentation. Creep strains and their partial recoverability are observed, hinting at the co-presence of viscoelasticity and viscoplasticity, and a clear effect of crosslinking in decreasing the overall material deformability emerges. We rationalize our experimental observations with the analysis of stress exponent and activation volume, resulting in a power-law breakdown behavior and governing deformation mechanisms occurring at the organic sub-nm interfaces scale, as rearrangement of organic ligands. The set of results is reinforced by the evaluation of the strain rate sensitivity via strain rate jump tests, and the assessment of the effect of oscillations during continuous stiffness measurement mode.

OriginalspracheEnglisch
Aufsatznummer112000
Seitenumfang14
FachzeitschriftMaterials and Design
Jahrgang231.2023
AusgabenummerJuly
Frühes Online-Datum17 Mai 2023
DOIs
PublikationsstatusVeröffentlicht - Juli 2023

Bibliographische Notiz

Funding Information:
The authors gratefully acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers GI 1471/1-1 and 192346071-SFB 986. The authors are thankful to Fraunhofer CAN GmbH for the TEM images of the functionalized nanoparticles, Prof. Gerold Schneider (Hamburg University of Technology) for the fruitful discussion, Dr. Jasmin Koldehoff (Hamburg University of Technology) for the assistance with nanoindentation tests, Dr. Hans Jelitto (Hamburg University of Technology) for the assistance with AFM measurements, and Dr. Emad Maawad (Institute of Materials Physics, Helmholtz-Zentrum Hereon) for assistance with the SAXS data acquisition.

Funding Information:
The authors gratefully acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers GI 1471/1-1 and 192346071-SFB 986. The authors are thankful to Fraunhofer CAN GmbH for the TEM images of the functionalized nanoparticles, Prof. Gerold Schneider (Hamburg University of Technology) for the fruitful discussion, Dr. Jasmin Koldehoff (Hamburg University of Technology) for the assistance with nanoindentation tests, Dr. Hans Jelitto (Hamburg University of Technology) for the assistance with AFM measurements, and Dr. Emad Maawad (Institute of Materials Physics, Helmholtz-Zentrum Hereon) for assistance with the SAXS data acquisition.

Publisher Copyright:
© 2023 The Author(s)

Dieses zitieren