Aktivitäten pro Jahr
Abstract
We study {0,1} and {−1,1} polynomials f(z), called Newman and Littlewood polynomials, that have a prescribed number N(f) of zeros in the open unit disk D={z∈C:|z|<1}. For every pair (k,n)∈N^2, where n≥7 and k∈[3,n−3], we prove that it is possible to find a {0,1}--polynomial f(z) of degree deg f=n with non--zero constant term f(0)≠0, such that N(f)=k and f(z)≠0 on the unit circle ∂D. On the way to this goal, we answer a question of D. W. Boyd from 1986 on the smallest degree Newman polynomial that satisfies |f(z)|>2 on the unit circle ∂D. This polynomial is of degree 38 and we use this special polynomial in our constructions. We also identify (without a proof) all exceptional (k,n) with k∈{1,2,3,n−3,n−2,n−1}, for which no such {0,1}--polynomial of degree n exists: such pairs are related to regular (real and complex) Pisot numbers.
Similar, but less complete results for {−1,1} polynomials are established. We also look at the products of spaced Newman polynomials and consider the rotated large Littlewood polynomials. Lastly, based on our data, we formulate a natural conjecture about the statistical distribution of N(f) in the set of Newman and Littlewood polynomials.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 831-870 |
Seitenumfang | 40 |
Fachzeitschrift | Mathematics of computation |
Jahrgang | 90.2021 |
Ausgabenummer | March |
Frühes Online-Datum | 27 Okt. 2020 |
DOIs | |
Publikationsstatus | Veröffentlicht - März 2021 |
-
8th meeting of Young Lithuanian Mathematicians
Jonas Jankauskas (Organisator/-in)
27 Dez. 2019Aktivität: Teilnahme an oder Organisation einer Veranstaltung › Konferenzteilnahme
-
Kevin Hare
Jonas Jankauskas (Gastgeber)
3 Feb. 2019 → 16 Feb. 2019Aktivität: Aufnahme von Gästen › Aufnahme von akademischen Gästen