Abstract
Due to the aggravating situations regarding climate change, resource supply, and land consumption by the landfilling of residual materials, it is necessary to develop recycling processes that allow the recovery of valuable metals from industrial residues with significantly reduced CO2 emissions. In this context, it is conceivable that processes using chlorination reactions will be of importance in the future. The simultaneous selective chlorination and evaporation of nine valuable metals was evaluated theoretically and experimentally in small-scale STA trials; then, it was tested practically on six different iron precipitation residues from the zinc and nickel industries. The metal chlorides FeCl3蜩6H2O and MgCl2蜩6H2O were identified as the most effective reactants, resulting in high extraction rates for the metals In, Ag, Zn, Pb, Au, and Bi, while lower yields are achievable for Sn, Cu, and Ni. Iron, which is predominant in volume in the residual materials, shows lower chlorination tendencies which allows the effective separation of the valuable elements of interest from the iron containing matrix.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 3590 |
Seitenumfang | 16 |
Fachzeitschrift | Applied Sciences : open access journal |
Jahrgang | 12.2022 |
Ausgabenummer | 7 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Apr. 2022 |
Bibliographische Notiz
Funding Information:Funding: This work was funded by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association.
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.