Ballistic tests on hot-rolled Ti-6Al-4V plates: Experiments and numerical approaches

Alexander Janda, Benjamin Ralph, Yaël Demarty, Marcel Sorger, Stefan Ebenbauer, Aude Prestl, Ingo Siller, Martin Stockinger, Helmut Clemens

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Superior ballistic performance and the lightweight character of Ti alloys are considered as main reasons for their use in armour applications against a broad spectrum of ballistic threats, e.g. bullet, fragment or blast impact. Because dynamic loading caused by typical penetrators is characterized by high strain rates, only specific test methods allow a closer investigation of the respective material behaviour. In the present study, quasi-static and dynamic compression tests as well as ballistic tests were conducted on a two-phase α+β alloy Ti-6Al-4V (in m%) manufactured by hot-rolling. Post-deformation heat treatments, influencing microstructure and mechanical properties were applied in order to compare three different microstructural configurations: as-rolled, mill-annealed and bimodal. While, on the one hand, ballistic tests were employed for the determination of the ballistic limit velocity v50, compression tests, on the other hand, delivered essential input parameters for the application of the Johnson-Cook constitutive model in a finite element simulation of the impact event. The comparison of experimental results to simulation results was supplemented by means of microstructural characterization of tested samples with the focus set on the prevalently observed deformation and damage mechanisms, as for example adiabatic shearing.
Original languageEnglish
Pages (from-to)39-53
Number of pages15
JournalDefence Technology
Volume26.2023
Issue numberAugust
Early online date22 Nov 2022
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright: © 2022 China Ordnance Society

Keywords

  • Adiabatic shear bands
  • Ballistic performance
  • FE simulation
  • Intermetallic phase
  • Split Hopkinson pressure bar
  • Ti-6Al-4V

Cite this