TY - THES
T1 - Entwicklung einer effizienten Simulationsmethode für einen Gewindewalzprozess
AU - Weindl, Christian
N1 - gesperrt bis 04-06-2026
PY - 2021
Y1 - 2021
N2 - Die plastische Formgebung zeichnet sich durch hohe Gestaltungsfreiheit, kurze Produktionszeiten, hohe Prozesssicherheit und verbesserte mechanische Eigenschaften aus. Zur Beschreibung und Abbildung verschiedener Belastungen sowie Reaktionen von Werkzeug und Werkstück ist eine Finite-Elemente-Simulation unabdingbar. Der in dieser Masterarbeit vorgestellte real existierende Gewindewalzprozess wird mittels einer Finiten-Elemente-Simulation nachgebaut und anschließend mit dem realen Gewindewalzprozess verglichen. Durch Variationen verschiedener Parameter wird die Berechnungsstabilität der Simulation geprüft und die Berechnungszeit der Simulation optimiert. Ziel dieser Optimierung ist die Entwicklung einer effizienten Simulationsmethode mit größtmöglicher Genauigkeit und kurzer Berechnungsdauer. Darauffolgend werden die Simulationsergebnisse analysiert und grafisch aufbereitet. Die Analyse der Simulationsergebnisse und der anschließende Vergleich mit dem realen Walzprozess zeigen, dass die Orte größter Belastungen des Werkzeuges in der Simulation mit dem Verschleiß des Werkzeuges im realen Gewindewalzprozess annähernd übereinstimmen. Abschließend werden verschiedene mögliche Verbesserungen am Werkzeug vorgestellt, um die mechanischen Belastungen erfassen zu können und um anschließend den Gewindewalzprozess zu optimieren.
AB - Die plastische Formgebung zeichnet sich durch hohe Gestaltungsfreiheit, kurze Produktionszeiten, hohe Prozesssicherheit und verbesserte mechanische Eigenschaften aus. Zur Beschreibung und Abbildung verschiedener Belastungen sowie Reaktionen von Werkzeug und Werkstück ist eine Finite-Elemente-Simulation unabdingbar. Der in dieser Masterarbeit vorgestellte real existierende Gewindewalzprozess wird mittels einer Finiten-Elemente-Simulation nachgebaut und anschließend mit dem realen Gewindewalzprozess verglichen. Durch Variationen verschiedener Parameter wird die Berechnungsstabilität der Simulation geprüft und die Berechnungszeit der Simulation optimiert. Ziel dieser Optimierung ist die Entwicklung einer effizienten Simulationsmethode mit größtmöglicher Genauigkeit und kurzer Berechnungsdauer. Darauffolgend werden die Simulationsergebnisse analysiert und grafisch aufbereitet. Die Analyse der Simulationsergebnisse und der anschließende Vergleich mit dem realen Walzprozess zeigen, dass die Orte größter Belastungen des Werkzeuges in der Simulation mit dem Verschleiß des Werkzeuges im realen Gewindewalzprozess annähernd übereinstimmen. Abschließend werden verschiedene mögliche Verbesserungen am Werkzeug vorgestellt, um die mechanischen Belastungen erfassen zu können und um anschließend den Gewindewalzprozess zu optimieren.
KW - areas of application for rock bolts
KW - assembly of rock bolt
KW - ddad
KW - warm and cold forming
KW - thread rolling
KW - fibre flow after thread rolling
KW - Threaded rod in the real process and in the simulation
KW - Analytical material models
KW - Structure of the thread rolling process in Simufact
KW - Results of the simulation
KW - Einsatzgebiete Gebirgsanker
KW - Aufbau Tunnelbohranker
KW - Warm-
KW - und Kaltumformung
KW - Gewindewalzen
KW - Faserverlauf nach dem Gewindewalzen
KW - Gewindestab im Realprozess und in der Simulation
KW - analytische Materialmodelle
KW - Aufbau des Gewindewalzprozesses in Simufact
KW - Ergebnisse der Simulation
M3 - Masterarbeit
ER -