Abstract
Since the European Union defined ambitious CO2 emission targets, low-carbon-emission alternatives to the widespread integrated blast furnace (BF)—basic oxygen furnace (BOF) steelmaking strategy—are demanded. Direct reduction (DR) with natural gas as the reducing agent, already an industrially applied technology, is such an alternative. Consequently, the melting behavior of its intermediate product, i.e., direct reduced iron (DRI), in either an electric arc furnace (EAF) or a submerged arc furnace (SAF), is of great interest. Based on the conditions in these aggregates, a test series to experimentally simulate the first few seconds after charging DRI was defined. DRI samples with different carbon contents and hot briquetted iron (HBI) were immersed in high- and low-carbon melts as well as high- and low-iron oxide slags. The reacted samples were quenched in liquid nitrogen. The specimens were qualitatively evaluated by investigating their surfaces and cross sections. The dissolution of carbon-free DRI progressed relatively slowly and was driven by heat transfer. However, carbon, present either in the DRI sample or in the melt, not only accelerated the dissolution process, but also reacted with residual iron oxide in the pellet or the slag.
Original language | English |
---|---|
Article number | 5691 |
Number of pages | 14 |
Journal | Materials |
Volume | 15.2022 |
Issue number | 16 |
DOIs | |
Publication status | Published - 18 Aug 2022 |
Bibliographical note
Funding Information:This research was funded by K1-MET GmbH, metallurgical competence center (funding number FFG No. 869295). The research program of the K1-MET competence center is supported by COMET (Competence Center for Excellent Technologies), the Austrian program for competence centers. COMET is funded by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology, the Federal Ministry for Labour and Economy, the provinces of Upper Austria, Tyrol, and Styria, and the Styrian Business Promotion Agency (SFG). In addition, this research work was partially financed by the industrial partners Primetals Technologies Austria GmbH, voestalpine Stahl GmbH, voestalpine Stahl Donawitz GmbH and thyssenkrupp Steel Europe AG, and the scientific partner Montanuniversität Leoben.
Publisher Copyright:
© 2022 by the authors.
Keywords
- direct reduced iron
- DRI dissolution
- electric arc furnace
- hydrogen-based steelmaking
- low-CO steelmaking
- submerged arc furnace