Microstructural evolution of metallurgical coke: Evidence from Raman spectroscopy

Gerd Rantitsch, Anrin Bhattacharyya, Ahmet Günbati, Marc-Andre Schulten, Johannes Schenk, Ilse Letofsky-Papst, Jörg Albering

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)


Raman spectroscopy traces the microstructural evolution of carbonaceous matter (CM) during artificial heating. Thermo-chemical reactivity and strength of blast furnace coke at 1100 °C is dependent on the graphitization state of the feed coke. A standard coke reactivity index (CRI) sample is composed of lumps, showing a high microstructural variability. The frequency distribution of the D-STA parameter estimated by the “Interactive Fitting of Raman Spectra” (IFORS) software suggests a positive correlation between degree of CM organization and CRI. Samples from the tuyere region of an operating blast furnace evidence graphitization of CM at temperatures higher than 1900 °C. IFORS parameters, calibrated by x-ray diffraction-based lattice dimensions and transmission electron microscopy data constrain a temperature gradient decreasing from the raceway to the deadman zone. The gradient controls a continuous variation of the petrographic coke texture. As an application, the IFORS method is able to map the graphitization zones in the hearth of a working blast furnace.

Original languageEnglish
Article number103546
Number of pages12
JournalInternational journal of coal geology
Issue number1 July
Early online date23 Jun 2020
Publication statusPublished - 1 Jul 2020

Bibliographical note

Publisher Copyright: © 2020 The Author(s)

Cite this