TY - JOUR
T1 - Middle-Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine-Carpathian-Dinaridic Mountain Range
AU - Gawlick, Hans-Jürgen
AU - Missoni, Sigrid
N1 - Publisher Copyright: © 2019 International Association for Gondwana Research
PY - 2019/10
Y1 - 2019/10
N2 - The Middle-Late Jurassic mountain building process in the Western Tethyan realm was triggered by west- to northwestward-directed ophiolite obduction onto the wider Adriatic shelf. This southeastern to eastern Adriatic shelf was the former passive continental margin of the Neo-Tethys, which started to open in the Middle Triassic. Its western parts closed from around the Early/Middle Jurassic boundary with the onset of east-dipping intra-oceanic subduction. Ongoing contraction led to ophiolite obduction onto the former continental margin since the Bajocian. Trench-like basins formed concomitantly within the evolving thin-skinned orogen in a lower plate situation. Deep-water basins formed in sequence with the northwest-/westward propagating nappe fronts, which served as source areas of the basin fills. Basin deposition was characterized by coarsening-upward cycles, i.e. sedimentary mélanges as synorogenic sediments. The basin fills became sheared successively by ongoing contractional tectonics with features of typical mélanges. Analyses of ancient Neo-Tethys mélanges along the Eastern Mediterranean mountain ranges allow both, a facies reconstruction of the outer western passive margin of the Neo-Tethys and conclusions on the processes and timing of Jurassic orogenesis. Comparison of mélanges identical in age and component spectrum in different mountain belts figured out one Neo-Tethys Ocean in the Western Tethyan realm, instead of multi-ocean and multi-continent scenarios.
AB - The Middle-Late Jurassic mountain building process in the Western Tethyan realm was triggered by west- to northwestward-directed ophiolite obduction onto the wider Adriatic shelf. This southeastern to eastern Adriatic shelf was the former passive continental margin of the Neo-Tethys, which started to open in the Middle Triassic. Its western parts closed from around the Early/Middle Jurassic boundary with the onset of east-dipping intra-oceanic subduction. Ongoing contraction led to ophiolite obduction onto the former continental margin since the Bajocian. Trench-like basins formed concomitantly within the evolving thin-skinned orogen in a lower plate situation. Deep-water basins formed in sequence with the northwest-/westward propagating nappe fronts, which served as source areas of the basin fills. Basin deposition was characterized by coarsening-upward cycles, i.e. sedimentary mélanges as synorogenic sediments. The basin fills became sheared successively by ongoing contractional tectonics with features of typical mélanges. Analyses of ancient Neo-Tethys mélanges along the Eastern Mediterranean mountain ranges allow both, a facies reconstruction of the outer western passive margin of the Neo-Tethys and conclusions on the processes and timing of Jurassic orogenesis. Comparison of mélanges identical in age and component spectrum in different mountain belts figured out one Neo-Tethys Ocean in the Western Tethyan realm, instead of multi-ocean and multi-continent scenarios.
KW - palaeogeography, tethys, mélange
UR - http://www.scopus.com/inward/record.url?scp=85063597354&partnerID=8YFLogxK
U2 - 10.1016/j.gr.2019.03.003
DO - 10.1016/j.gr.2019.03.003
M3 - Article
SN - 1342-937X
VL - 74.2019
SP - 144
EP - 172
JO - Gondwana research
JF - Gondwana research
IS - October
ER -