Abstract
Six different perovskite-type oxides were investigated with respect to their ability for methanol synthesis via H2 and CO2: Fe-, Mn-, and Ti-based perovskites were prepared with and without Cu doping. For assessment, the catalysts were subjected to preliminary tests at atmospheric pressure to evaluate their ability to activate CO2. Additional catalytic tests with the doped versions of each catalyst type were carried out in a pressured reactor at 21 bar. After the measurements, the catalysts were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). All catalysts were able to produce methanol in the pressure tests. CO2 conversions between 14% and 23% were reached at 400 °C, with the highest methanol selectivity at the lower temperature of 250 °C. The combination of XRD and SEM revealed that the Fe-based and Ti-based perovskites were stable under reaction conditions and that catalytically highly active and stable nanoparticles had formed. The minor formation of CaCO3, which is a deactivating phase, was observed for one catalyst. These nanoparticles showed resistance to coking and sintering. However, the yield and selectivity for methanol need to be improved via the further tailoring of the perovskite composition.
Translated title of the contribution | Perovskitoxid Katlalysatoren für die CO2 Nutzbarmachung: Eine Grundlagenstudie neuartiger Cu-dotierter Perovskite für die Methanol Synthese |
---|---|
Original language | English |
Pages (from-to) | 378-387 |
Number of pages | 10 |
Journal | Compounds |
Volume | 2:2022 |
Issue number | 4 |
DOIs | |
Publication status | Published - 14 Dec 2022 |