Phase Transition of Magnetite Ore Fines During Oxidation Probed by In Situ High-Temperature X-Ray Diffraction

Heng Zheng, Oday Daghagheleh, Yan Ma, Bernd Taferner, Johannes Schenk, Yury Kapelyushin

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The reduction of magnetite-based iron ore fines in a hydrogen-induced fluidized bed becomes an attractive fossil-free ironmaking route. Our previous study showed that a prior oxidation treatment of magnetite was helpful to improve its fluidization and reduction behavior. However, the underlying oxidation mechanisms of magnetite ore fines remained unclear and required further investigations. In this study, two magnetite ore brands were analyzed via in situ high-temperature X-ray diffraction (HT-XRD) during oxidation, to investigate the thermal transformation of Fe3O4 to α-Fe2O3 at crystal scale. The lattice constants and crystallite sizes of both phases and oxidation degree were evaluated at different temperatures based on the HT-XRD patterns. The lattice constants of Fe3O4 and α-Fe2O3 increased with an increase in temperature due to the thermal expansion and can be successfully fitted with temperature by second-order polynomials. With Fe3O4 being oxidized into Fe2O3, the Fe2O3 crystallite grew and showed a certain growth habit. The Fe2O3 crystallite grew faster along the a/b axis than the c axis. The oxidation kinetics followed the parabolic law as shown by the sigmoid-shaped oxidation degree curve, suggesting that the solid diffusion of ions was the rate-limiting step.
Original languageEnglish
Pages (from-to)1195-1204
Number of pages10
JournalMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
Volume54.2023
Issue number3
DOIs
Publication statusPublished - 13 Mar 2023

Bibliographical note

Funding Information:
The authors gratefully acknowledge the funding support of K1-MET GmbH, metallurgical competence center. The research program of the K1-MET competence center is supported by COMET (Competence Center for Excellent Technologies), the Austrian program for competence centers. COMET is funded by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology, the Federal Ministry for Digital and Economic Affairs, the provinces of Upper Austria, Tyrol and Styria and the Styrian Business Promotion Agency (SFG). In addition, the research work is partially financed by Montanuniversitaet Leoben. Zheng Heng greatly acknowledges the financial support from the program of the China Scholarship Council (No.201908420284). Y. Ma acknowledges financial support through the Walter Benjamin Programme of the Deutsche Forschungsgemeinschaft (Project No. 468209039). Dr Yury Kapelyushin acknowledges financial support from the Russian Science Foundation Grant No. 21-79-00081, https://rscf.ru/project/21-79-00081/ .

Publisher Copyright:
© 2023, The Author(s).

Cite this