The Role of Mold Electromagnetic Stirring in the Dissipation of Superheat during the Continuous Casting of Billets

Research output: Contribution to journalArticleResearchpeer-review

Abstract

A two-phase solidification model coupling mold electromagnetic stirring (M-EMS) is used to investigate the initial solidification in the mold region of billet continuous casting. One novelty of this numerical study is to quantify how the M-EMS induces primary and secondary flows, interacting with the jet flows coming from the submerged entry nozzle, and how those flows further influence the dissipation of superheat and the initial solidification. The role of the M-EMS in speeding up the superheat dissipation in the mold region, known from previous studies and casting practices, is quantitatively verified. Additionally, some new knowledge regarding the M-EMS is found. The total heat transfer rate from the strand surface to the water-cooled copper mold is not affected by the M-EMS; with the M-EMS, the superheat effect on the solid growth can only be detected in the out-of-the-mold region, while the shell growth inside the mold region is quite independent of the superheat; a strong M-EMS tends to accelerate the growth of the solid shell in the mold region, but delays its growth in the secondary cooling zones. The aforementioned new findings may only be valid for the case of the current billet casting, to be confirmed for other casting formats/parameters.
Original languageEnglish
Article number2200065
Number of pages14
JournalSteel research international
Volume93.2022
Issue number10
DOIs
Publication statusE-pub ahead of print - 29 Jun 2022

Bibliographical note

Publisher Copyright: © 2022 The Authors. Steel Research International published by Wiley-VCH GmbH.

Keywords

  • continuous casting
  • electromagnetic stirring
  • solid shell growth
  • superheat dissipation

Cite this