Hierarchical nature of hydrogen-based direct reduction of iron oxides

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Yan Ma
  • Isnaldi R. Souza Filho
  • Yang Bai
  • Fabrice Patisson
  • Arik Beck
  • Jeroen A. van Bokhoven
  • Marc G. Willinger
  • Kejiang Li
  • Degang Xie
  • Dirk Ponge
  • Stefan Zaefferer
  • Baptiste Gault
  • Jaber R. Mianroodi
  • Dierk Raabe

Externe Organisationseinheiten

  • Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf
  • ETH Zürich
  • Paul Scherrer Institut
  • University of Science and Technology Beijing
  • Xi’an Jiaotong University
  • Imperial College London
  • Université de Lorraine, Nancy

Abstract

Fossil-free ironmaking is indispensable for reducing massive anthropogenic CO2 emissions in the steel industry. Hydrogen-based direct reduction (HyDR) is among the most attractive solutions for green ironmaking, with high technology readiness. The underlying mechanisms governing this process are characterized by a complex interaction of several chemical (phase transformations), physical (transport), and mechanical (stresses) phenomena. Their interplay leads to rich microstructures, characterized by a hierarchy of defects ranging across several orders of magnitude in length, including vacancies, dislocations, internal interfaces, and free surfaces in the form of cracks and pores. These defects can all act as reaction, nucleation, and diffusion sites, shaping the overall reduction kinetics. A clear understanding of the roles and interactions of these dynamically-evolving nano-/microstructure features is missing. Gaining better insights into these effects could enable improved access to the microstructure-based design of more efficient HyDR methods, with potentially high impact on the urgently needed decarbonization in the steel industry.

Details

OriginalspracheEnglisch
Aufsatznummer114571
Seitenumfang7
FachzeitschriftScripta Materialia
Jahrgang213.2022
AusgabenummerMay
Frühes Online-Datum3 Feb 2022
DOIs
StatusVeröffentlicht - Mai 2022