Predictive Exoskeleton Control for Arm-Motion Augmentation Based on Probabilistic Movement Primitives Combined with a Flow Controller

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

Externe Organisationseinheiten

  • Jožef Stefan Institute, Ljubljana
  • Universität Lübeck
  • Jožef Stefan International Postgraduate School, Ljubljana

Abstract

There are many work-related repetitive tasks where the application of exoskeletons could significantly reduce the physical effort by assisting the user in moving the arms towards the desired location in space. To make such control more user acceptable, the controller should be able to predict the motion of the user and act accordingly. This letter presents an exoskeleton control method that utilizes probabilistic movement primitives to generate predictions of user movements in real-time. These predictions are used in a flow controller, which represents a novel velocity-field-based exoskeleton control approach to provide assistance to the user in a predictive way. We evaluated our approach with a haptic robot, where a group of twelve participants had to perform movements towards different target locations in the frontal plane. We tested whether we could generalize the predictions for new and unknown target locations whilst providing assistance to the user without changing their kinematic parameters. The evaluation showed that we could accurately predict user movement intentions while at the same time significantly decrease the overall physical effort exerted by the participants to achieve the task.

Details

OriginalspracheEnglisch
Aufsatznummer9387088
Seiten (von - bis)4417-4424
Seitenumfang8
Fachzeitschrift IEEE robotics and automation letters
Jahrgang6.2021
Ausgabenummer3
DOIs
StatusElektronische Veröffentlichung vor Drucklegung. - 25 Mär 2021