Mineralogy and mineral chemistry of detrital heavy minerals from the Rhine River in Germany as evidence to their provenance, sedimentary and depositional history: focus on platinum‑group minerals and remarks on cassiterite, columbite‑group minerals and uraninite

Research output: Contribution to journalArticleResearchpeer-review

Bibtex - Download

@article{6cfbf6a18b2c4246b30c963b8713c6c3,
title = "Mineralogy and mineral chemistry of detrital heavy minerals from the Rhine River in Germany as evidence to their provenance, sedimentary and depositional history: focus on platinum‑group minerals and remarks on cassiterite, columbite‑group minerals and uraninite",
abstract = "In the course of studying the gold-bearing heavy mineral spectrum of sediments from the upper Rhine River, a distinct suite of detrital grains comprising platinum- group minerals (PGM), cassiterite, columbite-group minerals and uraninite was identified and investigated using conventional and modern analytical methods. This study aimed to characterize the selected mineral groups mineralogically and geochemically in order to identify possible source areas and to reconstruct different aspects of the complex sedimentary history of the Rhine River sediments. The PGM assemblage is dominated by grains of Ru–Os– Ir alloys (~70 {\%}), followed by Pt–Fe alloys, sperrylite and rare other PGM. Accordingly, this PGM assemblage represents highly mature, physically and chemically extremely resistant compounds which may have experienced and survived repeated reworking during their sedimentary history. Pt–Fe alloys and sperrylite may originate from various sources; however, the predominant Ru–Os–Ir alloy grains point to an origin from ophiolite sequences of unknown age (but likely pre-Alpine; Variscan or older). The exact locations of the primary sources and the complex, prolonged sedimentary history of the detrital PGM with possibly multiple intermittent storages remain unknown. Detrital cassiterite grains were dated by the U–Pb method using LAICP- MS. The age dates of cassiterite largely overlap with zircon age distributions by peaking distinctly at ca. 325 Ma (majority of ages), thereby implying a predominantly Variscan age of the cassiterite grains and possible derivation from mineralization in the Black Forest area. Columbitegroup minerals are dominantly tapiolite originating from pegmatites. Rare uraninite grains attest that this mineral experienced rapid erosion, transport and deposition in a reducing environment.",
keywords = "Platingruppenmineral",
author = "Thomas Oberth{\"u}r and Frank Melcher and Simon Goldmann and Hermann Wotruba and Axel Gerdes and Arjan Dijkstra and {W. Dale}, Christopher",
year = "2016",
doi = "0.1007/s00531-015-1181-3",
language = "English",
volume = "105",
pages = "637--657",
journal = "International journal of earth sciences : Geologische Rundschau (GR ; Geologische Rundschau ; journal of Geologische Vereinigung)",
issn = "1437-3254",
publisher = "Springer Berlin",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Mineralogy and mineral chemistry of detrital heavy minerals from the Rhine River in Germany as evidence to their provenance, sedimentary and depositional history: focus on platinum‑group minerals and remarks on cassiterite, columbite‑group minerals and uraninite

AU - Oberthür, Thomas

AU - Melcher, Frank

AU - Goldmann, Simon

AU - Wotruba, Hermann

AU - Gerdes, Axel

AU - Dijkstra, Arjan

AU - W. Dale, Christopher

PY - 2016

Y1 - 2016

N2 - In the course of studying the gold-bearing heavy mineral spectrum of sediments from the upper Rhine River, a distinct suite of detrital grains comprising platinum- group minerals (PGM), cassiterite, columbite-group minerals and uraninite was identified and investigated using conventional and modern analytical methods. This study aimed to characterize the selected mineral groups mineralogically and geochemically in order to identify possible source areas and to reconstruct different aspects of the complex sedimentary history of the Rhine River sediments. The PGM assemblage is dominated by grains of Ru–Os– Ir alloys (~70 %), followed by Pt–Fe alloys, sperrylite and rare other PGM. Accordingly, this PGM assemblage represents highly mature, physically and chemically extremely resistant compounds which may have experienced and survived repeated reworking during their sedimentary history. Pt–Fe alloys and sperrylite may originate from various sources; however, the predominant Ru–Os–Ir alloy grains point to an origin from ophiolite sequences of unknown age (but likely pre-Alpine; Variscan or older). The exact locations of the primary sources and the complex, prolonged sedimentary history of the detrital PGM with possibly multiple intermittent storages remain unknown. Detrital cassiterite grains were dated by the U–Pb method using LAICP- MS. The age dates of cassiterite largely overlap with zircon age distributions by peaking distinctly at ca. 325 Ma (majority of ages), thereby implying a predominantly Variscan age of the cassiterite grains and possible derivation from mineralization in the Black Forest area. Columbitegroup minerals are dominantly tapiolite originating from pegmatites. Rare uraninite grains attest that this mineral experienced rapid erosion, transport and deposition in a reducing environment.

AB - In the course of studying the gold-bearing heavy mineral spectrum of sediments from the upper Rhine River, a distinct suite of detrital grains comprising platinum- group minerals (PGM), cassiterite, columbite-group minerals and uraninite was identified and investigated using conventional and modern analytical methods. This study aimed to characterize the selected mineral groups mineralogically and geochemically in order to identify possible source areas and to reconstruct different aspects of the complex sedimentary history of the Rhine River sediments. The PGM assemblage is dominated by grains of Ru–Os– Ir alloys (~70 %), followed by Pt–Fe alloys, sperrylite and rare other PGM. Accordingly, this PGM assemblage represents highly mature, physically and chemically extremely resistant compounds which may have experienced and survived repeated reworking during their sedimentary history. Pt–Fe alloys and sperrylite may originate from various sources; however, the predominant Ru–Os–Ir alloy grains point to an origin from ophiolite sequences of unknown age (but likely pre-Alpine; Variscan or older). The exact locations of the primary sources and the complex, prolonged sedimentary history of the detrital PGM with possibly multiple intermittent storages remain unknown. Detrital cassiterite grains were dated by the U–Pb method using LAICP- MS. The age dates of cassiterite largely overlap with zircon age distributions by peaking distinctly at ca. 325 Ma (majority of ages), thereby implying a predominantly Variscan age of the cassiterite grains and possible derivation from mineralization in the Black Forest area. Columbitegroup minerals are dominantly tapiolite originating from pegmatites. Rare uraninite grains attest that this mineral experienced rapid erosion, transport and deposition in a reducing environment.

KW - Platingruppenmineral

U2 - 0.1007/s00531-015-1181-3

DO - 0.1007/s00531-015-1181-3

M3 - Article

VL - 105

SP - 637

EP - 657

JO - International journal of earth sciences : Geologische Rundschau (GR ; Geologische Rundschau ; journal of Geologische Vereinigung)

JF - International journal of earth sciences : Geologische Rundschau (GR ; Geologische Rundschau ; journal of Geologische Vereinigung)

SN - 1437-3254

ER -