On an experimental-computational approach for localised durability assessment of sliding contacts

Research output: Contribution to journalArticleResearchpeer-review

Organisational units

Abstract

Several approaches exist to manage the difficult task of assessing the time point of failure of a sliding contact. However, limitations to the freedom of the system design or the consideration of the loading history reduce the applicability of previous developments. Combined computational-experimental approaches, as they are already presented in literature for the prediction of stable linear wear, can provide much accurate results, also for the prediction of destabilization of tribo systems. The authors use such a combined approach to transfer the durability behaviour from an experimental model system (Ring-on-Disc) onto an arbitrary target application (Journal bearing geometry) with the same material combination. Internal tribo system interactions between the system components are obtained by the experimental model tester, while the consideration of different hydrodynamic and asperity contact pressure at the target system is managed in a computational way. With a cumulative damage approach, the different local load histories can be evaluated. The results visualize the locations on the journal bearing shell where destabilization, regarding a mild-severe wear transition or a seizure event with friction peak, will occur first. In combination with the validation tests at the journal bearing-target application it turns out, that already at a low cumulative damage coverage a macroscopic observable destabilization of wear and friction properties occurs.

Details

Original languageEnglish
Article number204068
Number of pages18
JournalWear
Volume486-487.2021
Issue number15 December
Early online date14 Aug 2021
DOIs
Publication statusPublished - 2021