The influence of varying substrate temperature, N₂ partial pressure, ion energy, and ion-to-Ti flux ratio on the texture development and mechanical properties of TiN is investigated in detail. We show that during low substrate temperature (Tₛ = 300 °C) reactive sputtering of TiN in a mixed Ar + N₂ discharge a change from 111- to 001-oriented growth occurs when increasing the ion-to-Ti ratio Jᵢ/Jᵢ₉ above 2.5 while using a low ion energy Eᵢ of 30 eV. This texture change can be reversed to a 111-oriented growth by increasing the ion energy to 60 and 90 eV when using high ion-to-Ti ratios Jᵢ/Jᵢ₉ of 2.5 and 9, without introducing strain. Thereby the hardnes can be increased from ~31 to 37 GPa with only minor changes in compressive stresses. Consequently, by defining the ion-to-Ti ratio and the ion energy during low substrate temperature reactive sputtering of TiN the texture development towards 111- or 001-oriented growth can be controlled. Based on previous studies and the texture development as a function of substrate temperature and N₂–partial pressure, we propose that varying the ion-to-Ti ratio and the ion energy result in different N-terminated surfaces and hence different Ti-fluxes from 111- to 001-oriented grains and vice versa.

Keywords: Titanium nitride; Ion bombardment; Adatom mobility; Texture development; Thin films

1. Introduction

Titanium nitride TiNₓ, due to its unique properties such as high hardness, golden color, and chemical inertness is used for various applications, e.g., as a protective coating for machining tools and as a diffusion barrier in microelectronic devices [1–11]. Cubic B1-NaCl structure TiNₓ is stable over a wide composition range, which includes the stoichiometric compound with x = 1, and temperatures up to ~3290 °C. The N-rich boundary above 50 at. % N is undetermined, the Ti-rich boundary is at ~42 at.% N for 500 °C [12, 13]. TiN is in favor as a model system for investigations on preparation–structure–property interrelations based on its unique properties. Magnetron sputtering, where various particle fluxes bombard and hit the substrate surface and consequently the film, provides a large variety in preparation conditions. Thereby, nucleation and growth kinetics and consequently the texture development are influenced as TiN shows anisotropies in surface energy, strain energy, and adatom mobilities [2–10].

Based on the opposing behavior of surface energy (preferred (001) planes for minimized energy) and the strain energy (preferred (111) planes for minimized energy) Pelleg et al. [7] suggested that the preferred orientation during growth of TiN is controlled by their competition to minimize the overall energy. If the surface energy term is dominant, the (001) planes are preferred and for conditions where the strain energy becomes dominant, the film will grow towards (111). As the strain energy increases with increasing film thickness and energy of ion irradiation there will be a tendency towards a change from 001- to 111-oriented growth. However, Greene, Hultman, and Petrov et al. [2, 3, 8, 9] showed that varying the flux of incident N₂⁺ ions, having a low-energy of 20 eV, during reactive TiN deposition results in a pronounced texture change, without introducing strain, and attributed this to kinetic rather than thermodynamic effects. Growth at low temperatures and ion fluxes resulted in 111-textured TiN layers while increasing the ion-to-Ti flux ratio Jᵢ/Jᵢ₉ to values above 5 resulted in fully 001-oriented films. This was confirmed by ab initio studies of various adatom mobilities and pathways on TiN(001) and (111) surfaces by Gall et al. [10], showing that the kinetics of the Ti adatoms in particular (being the slow species and therefore the growth-rate determining step) on the (001) and (111) surfaces during growth of TiN are strongly influenced by the presence of atomic N on the surface.

Under reactive magnetron sputtering conditions with negligible N₂⁺ ion irradiation and atomic N flux incident at the growing film there is a net lateral Ti flux from 001 to 111 grains leading, during polycrystalline TiN deposition, to the more rapid growth of 111 grains at the expense of 001 grain growth. For deposition conditions with a high N₂⁺ ion irradiation (i.e., high N₂ partial pressure and/or high Jᵢ/Jᵢ₉) there is a net atomic Ti flux from 111- to 001-oriented grains and the 001-oriented grains will win in competitive texture evolution [10]. Thus, N₂⁺-ion irradiation results in a reversal of the net atomic intergrain flux and, hence, a corresponding reversal from 111 to 001 texture growth. Petrov et al. [2] showed that an 001-oriented growth can also be obtained by a low-flux ion irradiation (Jᵢ/Jᵢ₉ < 0.63) when using substrate bias potentials above 1000 V, as in TiN the [111] direction exposes the densest array of atoms to the bombarding ions, while [001] is the most open channeling direction where the energy of impinging ions is distributed over larger volumes. Planes corresponding to easy channeling directions and lower sputtering yield have a higher survival-probability. Due to the very
energetic ion bombardment these films have a high defect
density and stresses [2].

Whereas there are numerous studies on the influence of varying
substrate temperature, \(T_s \), partial pressure, ion energy
(for low \(J_i/J_{Ni} \approx 0.63 \)), and ion-to-Ti flux ratio (for
low ion energy \(E_i \leq 30 \text{ eV} \)) on the texture development
of TiN [1–10], there is no report on the influence of varying
the ion-to-Ti flux ratio (with \(J_i/J_{Ni} \leq 9 \)) at moderate ion en-
ergies \(E_i \) between 30 and 90 eV. To complete this study,
we add this variation to our investigations on the influence of
deposition conditions on texture development and me-
chanical properties of TiN thin films. We show that during
low substrate temperature (\(T_s = 300 \text{ °C} \)) reactive sputtering
of TiN in a mixed \(\text{Ar} + \text{N}_2 \) discharge a change from 111-
to 001-oriented growth occurs when increasing the ion-to-
Ti ratio \(J_i/J_{Ni} \) above 2.5 when using a low ion energy
\(E_i = 30 \text{ eV} \). This texture change can be reversed to a 111-
oriented growth by increasing the ion energy to 60 and
90 eV using ion-to-Ti ratios \(J_i/J_{Ni} \) of 2.5 and 9, without in-
roducing strain. As a result, the hardnesses increase from
\(\approx 31 \) to 37 GPa whereas the compressive stresses vary only
between \(-2.66 \) and \(-3.66 \) GPa. Consequently, defining the
ion-to-Ti ratio and the ion energy during low substrate tem-
perature reactive sputtering of TiN allows controlling the
texture development towards 111- or 001-oriented growth.

2. Experimental details

TiN films are grown on austenitic stainless steel and
Si(001) substrates at 150, 225, 300, 400, and 500 \textdegree C
by magnetically-unbalanced magnetron sputter deposition
from a Ti target (99.5 \% purity and 150 mm in diameter) in
mixed \(\text{Ar} + \text{N}_2 \) (both 99.999 \% purity) discharges. The \(\text{N}_2
\) partial pressure ratio, \(p_{\text{N}_2}/p_{\text{Ar}} \), was 17 \% of the 0.4 Pa
(3 mTorr) total pressure (\(\text{Ar} + \text{N}_2 \)) and the power density
at the Ti target was 3.0 W \(\cdot \text{cm}^{-2} \) to obtain near-stoichio-
metric TiN coatings with N/Ti ratios of 1.09 ± 0.04 (see
next paragraph). The deposition system with a base pres-
 sure of 0.1 mPa (7.5 \times 10^{-7} \text{ Torr}) used is a modified Ley-
bold-Univex 300 equipped with a circular unbalanced pla-
nar-magnetron (\(\Omega \) 152.4 mm, 6 inch, Gencoa PP 150 with
NdFeB – permanent magnets). The substrates are centered
parallel to the target and separated by 9 cm. An external
pair of coreless electromagnetic coils (Helmholtz arrange-
ment), are utilized, as indicated in the schematic of the
equipment, Fig. 1, to create a uniform axial magnetic field
\(B_{\text{ext}} \) with a maximum value of \(\pm 200 \text{ G} \) (20 mT) in the
region between the target and substrate. The positive or nega-
tive signs refer to \(B_{\text{ext}} \) fields aiding or opposing, respec-
tively, the magnetic field of the outer magnetron pole. The
incident metal flux \(J_i \) is estimated after [14] based upon
measurements of the film composition (see next paragraph)
and the deposition rate, which is obtained by the film thick-
ness and deposition time and assuming bulk density. The
ion flux \(J_i \) bombarding the growing film and the plasma po-
tential \(V_p \) are determined using Langmuir-probe measure-
ments (Hiden ESP Langmuir wire probe) following the
procedures described in [14]. The \(J_i/J_{Ti} \) ratio was set to 1.3, 2.5,
4.5, 9, 17, 25, and 35 by adjusting the external magnetic field
\(B_{\text{ext}} \) to \(-120, -80, -40, 0, +40, +80, \) and \(+120 \text{ G} \), see
Fig. 2, and the ion energy \(E_i \) was varied between 30,
60, 90, and 120 eV in the experiments by adjusting the bias
potential \(V_b \) applied to the substrates with respect to the
plasma potential \(V_p \). For single ionization, which is mainly
valid for the plasma conditions used, the ion energy is
therefore \(E_i = e(V_p - V_b) \) [15]. The floating potential \(V_f \)
as a function of \(B_{\text{ext}} \) is also added to Fig. 2 for comparison.

Film compositions are measured by wavelength disper-
sive electron probe microanalysis (MICROSCPE WDX-
3PC) calibrated using a stoichiometric TiN coating stan-
dard whose composition was determined by Rutherford
backscattering spectroscopy (RBS). The films exhibit no
detectable impurities within the detection limit of approxi-
amately 0.1 at.\%.

The biaxial compressive stresses \(\sigma \) with an accuracy of
\(\pm 0.25 \text{ GPa} \) were measured using the cantilever beam meth-
Method [16] in films (thickness of around 1.0 \text{μm}) grown on
Si(001). The hardnesses of our coatings (on steel substrates)
are obtained with a Berkovich indenter attached to an ultra
micro indentation system (UMIS). The maximum loads
range from 4 to 16 mN to keep the indentation depth below
10 \% of the film thickness of around 2.5 \text{μm}. The values for
\(H \) were obtained from analysing the loading and unloading
segments of the indentation curves after the Oliver–Pharr
method [17].

Structural investigations of the coatings on steel sub-
strates were performed by X-ray diffraction (XRD) with a

Int. J. Mat. Res. (formerly Z. Metallkd.) 100 (2009) 8
3. Results

The texture coefficients TC_{hkl}, calculated for the (111), (002), (022), and (113) XRD reflections after,

$$
TC_{hkl} = \frac{I_{hkl}}{I_{111}} + I_{002} + I_{022} + I_{113}
$$

where I_{111}, I_{002}, I_{022}, and I_{113} are their respective intensities, indicate a change from a preferred (111) orientation ($TC_{111} = 0.44$) to a preferred (001) orientation ($TC_{002} = 0.61$) with increasing substrate temperature T_s from 150 to 500 °C, using an ion energy E_i of 60 eV and an ion-to-Ti ratio J_i/J_Ti of 1.3 at a N_2 to total pressure ratio p_{N2}/p_T of 17 %, see Fig. 3a. Decreasing E_i to 30 eV at 300 °C (and keeping other parameters constant) results in a texture coefficient of $TC_{111} = 0.88$ and $TC_{002} = 0.05$. With increasing p_{N2}/p_T from 17 to 23 to 27 % (for $E_i = 30$ eV, $T_s = 300$ °C, $J_i/J_Ti = 1.3$) the texture coefficient TC_{111} decreases from 0.88 to 0.72 to 0.11 and TC_{002} increases from 0.05 to 0.14 to 0.87, respectively, see Fig. 3b. The biaxial compressive stresses in these films are below −1 GPa.

For further studies on the ion bombardment induced texture development during film growth, a low substrate temperature of $T_s = 300$ °C and a low N_2 to total pressure ratio p_{N2}/p_T of 17 % is used. Increasing the energy of the bombarding ions E_i from 30 to 60 to 90 eV while keeping the ion-to-Ti flux low ($J_i/J_Ti = 1.3$) results in a decrease of TC_{111} from 0.88 to 0.41 to 0.06, while TC_{002} changes from 0.05 to 0.44 to 0.42 and TC_{022} increases from 0.04 to 0.11 to 0.49, respectively, see Fig. 4. For a further increase in E_i to 120 eV, the texture changes towards (111) again, with $TC_{111} = 0.96$ and $TC_{002} = 0.00$. The TEM cross-sectional investigations of this film, Fig. 5a, exhibit an extremely fine columnar and dense morphology. As the film has a pronounced (111) growth orientation with $TC_{111} = 0.96$, no (111) planes can be detected during selected area electron diffraction (SAED) studies of the cross-section, Fig. 5b.
With almost doubling the ion-to-Ti flux J_i/J_{Ti} from 1.3 to 2.5 the preferred growth orientation is (111) with $E_i \geq 60$ eV. The same is valid for an even higher ion-to-Ti flux of 9, see Fig. 6a. In contrast, with low ion energy, $E_i = 30$ eV, the preferred growth orientation changes from (111) towards (001) while increasing the ion-to-Ti flux J_i/J_{Ti}, see Fig. 6b. The $TC_{(002)}$ increases from 0.05 to 0.70 to 0.99 and $TC_{(111)}$ decreases from 0.88 to 0.17 to 0.01 with increasing J_i/J_{Ti} from 1.3 to 2.5 to 35, respectively.

The stress measurements of our films indicate that their biaxial compressive stresses increase (for low values of $J_i/J_{Ti} = 1.3$, $T_s = 300$ °C, and $p_{N2}/p_T = 17\%$) from –0.57 to –2.74 to –4.83 to –5.82 GPa with increasing ion energy E_i from 30 to 60 to 90 to 120 eV, respectively, see Fig. 7a.

Varying the ion energy between 30 and 90 eV at higher ion densities results in minor changes of the compressive stresses between –3.12 and –3.66 GPa for $J_i/J_{Ti} = 2.5$ and –2.66 and –2.84 GPa for $J_i/J_{Ti} = 9$. Increasing the ion-to-Ti flux J_i/J_{Ti} from 2.5 to 35 at low energy ($E_i = 30$ eV) during film growth results in decreasing compressive stresses from –3.21 to –1.59 GPa, see Fig. 7b. The only exception from this trend is the film prepared with $J_i/J_{Ti} = 1.3$ having a compressive stress of –0.57 GPa, which can be explained by its open columnar structure (not shown here). Using low energies at a low substrate temperature requires a higher ion-to-Ti flux (in our experiments J_i/J_{Ti} has to be 2.5 for $T_s = 300$ °C and $E_i = 30$ eV) to form a dense film.

The dependence of the biaxial stresses in our films on the deposition conditions used is in excellent agreement with the variations in lattice parameter a and the full width at half maximum (I_{002}) of the (002) XRD reflection presented in Figs. 8 and 9. Generally, the full width at half maximum increases when the grain size decreases and/or the micro-stresses increase. Only if the ion-to-Ti flux is low with $J_i/J_{Ti} = 1.3$ there is a pronounced increase in a from 4.239 to 4.295 Å (Fig. 8a) and I_{002} from 0.76 to 0.89° (Fig. 8b) with increasing ion energy E_i from 30 to 120 eV, corresponding to the increase in σ, compare Fig. 7a. If the ion-to-Ti flux is high with $J_i/J_{Ti} = 2.5$ or 9 there is almost no change in a with values of 4.28 ± 0.005 or 4.27 ± 0.003 Å and I_{002} with values of 0.78 ± 0.07 or 0.79 ± 0.03°, respectively, when increasing E_i from 30 to 90 eV, see Fig. 8a and b. This is in agreement with the small variation in a, compare Fig. 7a. Keeping the ion energy at a low level of 30 eV while increasing the ion-to-Ti flux J_i/J_{Ti} from 2.5 to 35 during film growth results in decreasing a from 4.285 to 4.254 Å and decreasing I_{002} from 0.85 to 0.47°, see Fig. 9a and b, respectively. Corresponding results, with a decrease in a from 4.283 to 4.264 Å and a decrease in I_{002} from 1.01 to 0.47°, are obtained for our TiN coatings when increasing the substrate temperature from 150 to 500 °C using an ion bombardment with $J_i/J_{Ti} = 1.3$ and $E_i = 60$ eV. A decrease in a towards the stress free lattice parameter a_0 of 4.242 Å for bulk TiN [19] combined...
with a decrease in I_{002} suggests a decrease of macro- and micro-stresses in the films.

The hardness measurements of our coatings follow a similar dependency on the deposition conditions used (T_s, J/J_{Ti}, and E_i) as the results obtained for TC, σ, a, and I_{002}, see Fig. 10. With increasing substrate temperature from 225 to 500 °C the hardness decreases from 30.7 ± 2.1 to 26.1 ± 1.8 GPa, as the stresses decrease. Also, the decrease in H from ~31 to 25 GPa while increasing J/J_{Ti} from 2.5 to 35 at a low ion energy of $E_i = 30$ eV is mainly due to the reduction in compressive stresses from $\sigma = -3.12$ to -1.58 GPa and the texture change from (111) to (001), respectively, compare Figs. 10a and 7b. The low hardness value of 22.9 ± 2.5 GPa for the film grown with $J/J_{Ti} = 1.3$ and $E_i = 30$ eV can be explained by its open columnar structure, as mentioned before. The pronounced increase in H from 28.1 ± 1.7 to 39.6 ± 2.5 GPa with increasing ion energy from 60 to 120 eV during film growth can be explained by the observed pronounced increase in compressive stresses from -2.74 to -5.82 GPa and the pronounced change in texture with changing TC_{002} from 0.44 to 0.00 and TC_{111} from 0.41 to 0.96, respectively. As the biaxial compressive stresses in films prepared with high J/J_{Ti} vary only between -3.12 and -3.66 GPa ($J/J_{Ti} = 2.5$) and -2.66 and -2.84 GPa ($J/J_{Ti} = 9$) with increasing ion energy from 30 to 60 to 90 eV, the observed pronounced increase in H from 31.3 ± 2.1 to 36.4 ± 1.5 to 34.7 ± 2.2 GPa ($J/J_{Ti} = 2.5$) and from 32.1 ± 2.0 to 36.6 ± 2.2 to 37.0 ± 2.1 GPa ($J/J_{Ti} = 9$), can only be explained by the concomitant pronounced change in texture from (001) to (111), respectively, compare Figs. 10b, 7b, and 6a. The textures of these films change by decreasing TC_{002} from 0.70 to 0.04 to 0.00 and increasing TC_{111} from 0.17 to 0.95 to 0.99 with increasing E_i from 30 to 60 to 90 eV (with $J/J_{Ti} = 2.5$), respectively. For an even denser ion bombardment with $J/J_{Ti} = 9$ the observed texture change is even more pronounced with a decrease in TC_{002} from 0.98 to 0.01 to 0.00 and an increase in TC_{111} from 0.01 to 0.99 to 0.98 with increasing ion energy from 30 to 60 to 90 eV. The results show that hardness values above 32 GPa are only obtained for 111-oriented TiN films, where the film with the highest compressive stresses of ~5.82 GPa exhibits also the highest hardness of 39.6 ± 2.5 GPa. This film is characterized by a fine and dense columnar growth with a smooth surface, Fig. 5a.

4. Discussion

The texture developments of our TiN films towards (001) with increasing T_s follows the major trend that the orientation with the lowest surface energy ($\gamma_{(111)} > \gamma_{(001)} > \gamma_{(001)}$) is preferred if adatom mobilities during growth are sufficient, as reported in [2, 3]. Consequently, as the substrate temperature increases, and thereby the mobilities, the probability for a (001) growth orientation also increases. For conditions where kinetics rather than thermodynamics control texture formation (e.g., substrate temperature below 450 °C) the system is sensitive to changes in the environment. As mentioned in the introduction, the kinetics of the Ti adatoms in particular (being the slow species and therefore the growth-rate determining step) on the (001) and (111) surfaces during growth of TiN are strongly influenced by the presence of atomic N on the surface [10]. The mechanisms towards an 001-oriented growth with increasing T_s and p_{N}/p_{Ti} are further assisted by a concomitant decrease in biaxial stresses which would favor a 111-oriented growth as the (111) planes have the lowest strain energy. As TiN has a strain anisotropy with $\epsilon_{(011)} > \epsilon_{(111)} > \epsilon_{(001)}$ [4, 6] and a Young’s modulus anisotropy with $E_{(001)} > E_{(011)} > E_{(111)}$, the strain energy also has an anisotropy with $U_{(001)} > U_{(011)} > U_{(111)}$. Hence, (111) planes are preferable for high strains to minimize the strain energy in TiN.

Whereas the texture development of our TiN films as a function of the ion-to-Ti ratio J/J_{Ti} during growth can also easily be explained by well known mechanisms if the ion energy is low ($E_i = 30$ eV), the situation is more complex.

Fig. 9. Lattice parameter a (a) and full width at half maximum G_{002} of the (002) XRD reflection (b) of TiN films as a function of the ion-to-Ti flux J/J_{Ti} used during deposition with $E_i = 30$ eV, $T_s = 300$ °C, and $p_{N}/p_{Ti} = 17\%$.

Fig. 10. Hardness H of TiN films with respect to (a) the substrate temperature T_s ($J/J_{Ti} = 1.3$, $E_i = 60$ eV) and ion-to-Ti flux J/J_{Ti}, ($E_i = 30$ eV), and (b) the ion energy E_i ($J/J_{Ti} = 1.3$, 2.5, and 9) used during deposition at $T_s = 300$ °C and $p_{N}/p_{Ti} = 17\%$.

Int. J. Mat. Res. (formerly Z. Metallkd.) 100 (2009) 8
if ion energies of 60 and 90 eV are used. Increasing \(J/J_{Ti} \) from 1.3 to 35 at low \(E_i \) of 30 eV results in a change from 111-oriented to 001-oriented growth with \(TC_{(002)} \geq 0.94 \) for \(J/J_{Ti} \geq 4.5 \. As described in [10] increased \(N_2^+ \) irradiation (due to increased \(J/J_{Ti} \)) promotes the Ti flux from 111- to 001-oriented grains and hence results in 001-oriented growth. This mechanism is further assisted by a concomitant decrease in compressive stresses (reduction in strain energy and hence reduction in driving force towards 111-oriented growth) with increasing \(J/J_{Ti} \), see Fig. 7b.

Increasing the ion energy at a low ion-to-Ti ratio of \(J/J_{Ti} = 1.3 \) results in a texture change from (111) for \(E_i = 30 \text{ eV} \) to mixed (111) + (001) for \(E_i = 60 \text{ eV} \) to mixed (001) + (011) for \(E_i = 90 \text{ eV} \) to pronounced (111) for \(E_i = 120 \text{ eV} \). Here, the compressive stresses continuously increase with \(E_i \) from ~3.57 to ~5.82 GPa, Fig. 7a. This texture evolution (against the strain energy) suggests that with increasing \(E_i \) from 30 to 90 eV the \(N_2^+ \)-ion irradiation increases, as thereby the texture growth reverses from 111 to 001, see Fig. 4. With a further increase in \(E_i \) from 90 to 120 eV again the (111) growth texture is preferred, corresponding to the increased compressive stresses, indicating changes in growth determining processes. At higher ion-to-Ti ratios of \(J/J_{Ti} \geq 2.5 \) this texture change from 001- to 111-oriented growth occurs already with increasing \(E_i \) from 30 to 60 eV. As for these conditions the compressive stresses vary only between ~3.12 and ~3.66 GPa for \(J/J_{Ti} = 2.5 \) and ~2.66 and ~2.84 GPa for \(J/J_{Ti} = 9 \). Changed strain energy terms are not responsible for the observed transition from (001) towards (111). Our observations show that using an ion bombardment combining high ion-to-Ti ratios, \(J/J_{Ti} \geq 2.5 \), with moderate ion energies, \(E_i \) of 60 – 90 eV, results in a preferred (111) growth texture. We propose that resputtering events are responsible for this texture transition from (001) to (111) with increasing the ion energy from 30 to 60 eV when using high ion-to-Ti ratios of \(J/J_{Ti} \geq 2.5 \). The adsorption energy \(E_{ad} \) of Ti adatoms on TiN(111) with 10.09 eV is ~3 times that on TiN(001) with 3.30 eV [10]. Therefore, resputtering of Ti atoms from 001-oriented grains would be preferred as compared to 111-oriented grains. As already mentioned above and discussed in [10] the presence of atomic N on the TiN(001) results in a dramatic reduction in Ti adatom diffusion length and therefore, in a net atomic Ti flux from 111- to 001-oriented grains. (Therefore, the 001 texture develops with increasing \(J/J_{Ti} \) at low ion energy of 30 eV, Fig. 6b). Hence, higher ion energies with preferential resputtering of N would reduce this effect and lead to a net atomic Ti flux from 001- to 111-oriented grains, as is the case for low \(J/J_{Ti} \) and \(p_{N_2}/p_T \). Consequently, 111-oriented grains will win in a competitive texture evolution. Argon in our films could only be detected with 0.35, 0.40 and 0.26 at.% if an ion energy \(E_i \) of 90 eV (with \(J/J_{Ti} = 2.5 \) and 9), or 120 eV (with \(J/J_{Ti} = 1.3 \)) is used during deposition. Thus, channeling of energetic ions is minimal and therefore also texture development driven by anisotropic collision cascade effects.

The hardness development of our films with varying of the deposition conditions used follows the thereby induced changes in texture, morphology of the films, and compressive biaxial stresses. Hardness values above 32 GPa are only obtained for 111-oriented TiN films, where the film with the highest compressive stresses of ~5.82 GPa also exhibits the highest hardness of 39.6 ± 2.5 GPa.

5. Conclusions

We have studied the effect of varying the substrate temperature \(T_s \) (150 – 500 °C), ion energy \(E_i \) (30 – 120 eV), ion-to-Ti ratio \(J/J_{Ti} \) (1.3 – 35), and \(N_2 \) to total pressure ratio \(p_{N_2}/p_T \) (17 – 27 %) on the texture development and mechanical properties of face centered cubic TiN films sputtered from a metallic Ti target. The overall chemical composition of our films with TiN\(_{1.09}\) is independent of the deposition conditions used, where an Ar content of 0.26, 0.35, and 0.40 at.% could only be detected in the films prepared with the highest ion energy used of 120 eV (combined with \(J/J_{Ti} = 1.3 \) and 90 eV (combined with \(J/J_{Ti} = 2.5 \) and 9). Consequently, the influence of chemical variations on texture development and mechanical properties are minimal. The texture development of our films towards (001) with increasing \(T_s \) and \(p_{N_2}/p_T \) are fully in line with the well-known mechanisms of minimizing the surface energy term (preferred (001) orientation) and changes in the Ti-fluxes from 111- to 001-oriented grains. With increasing \(p_{N_2}/p_T \) from 17 to 27 % the texture changes from (111) to (001) as the Ti-flux from 111- to 001-oriented grains become larger than those from 001- to 111-oriented grains. Hence, the (001) orientation wins in a competitive texture evolution. Corresponding mechanisms are responsible for the texture development of TiN, from 111- to 001-oriented growth, when increasing the ion-to-Ti ratio \(J/J_{Ti} \) from 1.3 to 35 while keeping the ion energy low with 30 eV.

The change in texture of our TiN films from pronounced (001) to pronounced (111) with increasing ion energy from 30 to 60 eV combined with a high ion-to-Ti ratio \(J/J_{Ti} = 2.5 \) can not be explained by an increased strain energy term, which would favor a 111-oriented growth as thereby the strain energy can be minimized. The compressive stresses in these coatings are almost independent of the increase in ion energy. We propose that with increasing \(E_i \) to 60 eV preferential resputtering of Ti and N occurs. As the adsorption energy of Ti atoms is ~3 times smaller on TiN(001) than on TiN(111), resputtering would preferentially occur for Ti adatoms on TiN(001). Additionally, preferential resputtering of atomic N would reverse the effect of increased \(J/J_{Ti} \) at low \(E_i \) and result in a net atomic Ti flux from 001- to 111-oriented grains. Hence, both resputtering of Ti and N result in a 111 texture during competitive growth. This mechanism allows control of the texture formation from 001- to 111-oriented growth by simply increasing the ion energy from 30 to 60 eV while using high ion-to-Ti ratios \(J/J_{Ti} = 2.5 \), without increasing the compressive stresses.

P.H.M. greatly acknowledges support by the START Program (project Y371) of the Austrian Science Fund (FWF).

References

Bibliography

DOI 10.3139/146.110159
Int. J. Mat. Res. (formerly Z. Metallkd.)
100 (2009) 8; page 1052–1058
© Carl Hanser Verlag GmbH & Co. KG
ISSN 1862-5282

Correspondence address
Priv. Doz. Dr. Paul H. Mayrhofer
Department Physical Metallurgy and Materials Testing
Montanuniversität Leoben
Franz Josef Strasse 18, A-8700 Leoben, Austria
Tel.: +43 3842 42 11
Fax: +43 3842 42 02
E-mail: paul.mayrhofer@unileoben.ac.at

You will find the article and additional material by entering the document number MK110159 on our website at www.ijmr.de

(Received January 8, 2009; accepted March 12, 2009)