A New Fracture Toughness Test for Ceramic Discs and Plates
Tanja Lube, Stefan Rasche, Tjokorda Gde Tirta Nindhia

Components and specimens for B3B-KIc-test

Knoop Indenter

Fracture surface with Knoop indentation crack, fluorescent dye

Test set-up of the B3B-KIc-test

Measurement of dimensions of the starting crack

Components or specimens produced during material development are often too small to machine standard specimens for KIc-testing (3 × 4 × 45 mm³) out of them.

Material properties of ceramics depend on consolidation and sintering conditions. On large specimens (often fabricated separately) differing properties are determined.

WANTED: a test method for fracture toughness applicable to small material pieces

Experimental Method
- Introduce starter crack with Knoop indenter
- Grind off deformed zone
- Fracture specimen in B3B-test
- Calculate fracture stress σ_{B3B} from maximum force
- Measure crack size (a, c) on fracture surface
- Calculate Max(Y_A, Y_C)
- Evaluate K_{IC}

Sources of Error

- Crack orientation
- Crack location

Motivation

- Components or specimens produced during material development are often too small to machine standard specimens for K_{IC}-testing (3 × 4 × 45 mm³) out of them.
- Material properties of ceramics depend on consolidation and sintering conditions. On large specimens (often fabricated separately) differing properties are determined.

Parametric Evaluation of the Stress Intensity Factor

$$K_{IC} = \sigma_{B3B} \sqrt{\frac{\pi a}{c}}$$

$$Y_{A,C} = Y_{A,C} \left(\frac{a}{c}, \frac{t}{R}, \frac{R}{R_{B}}, \nu \right)$$

- Fitted expression for Y_A and Y_C

Verification

- Small measurement error
- Precise evaluation of Y using FEM
- Formula for K_{IC} evaluation available [1]
- Variable specimen sizes, also small specimens possible
- Variable specimen shape possible: round discs or rectangular plates
- Can be applied directly to components (electrical resistors, PTCs, ...) or to specimens taken from components

Conclusions

- Small measurement error
- Precise evaluation of Y using FEM
- Formula for K_{IC} evaluation available [1]
- Variable specimen sizes, also small specimens possible
- Variable specimen shape possible: round discs or rectangular plates
- Can be applied directly to components (electrical resistors, PTCs, ...) or to specimens taken from components

Publications:

T.G.T. Nindhia acknowledges support of ASEA UNINET.