DIPLOMARBEIT

Einfluss der Pulverfraktion auf die mechanischen Eigenschaften von pulvermetallurgisch hergestelltem Schnellarbeitsstahl

Leoben, August 2007

Harald Winkler
Die vorliegende Arbeit wurde im Rahmen eines Projektes des Material Center Leoben Forschung GmbH in Zusammenarbeit mit der Montanuniversität Leoben und der Böhler Edelstahl GmbH in Kapfenberg durchgeführt.

Ich erkläre an Eides statt, dass diese Arbeit von mir selbstständig und nur unter Verwendung der angegebenen Literatur durchgeführt wurde.

Leoben, August 2007 Harald Winkler
Danksagung

Mein Dank gilt Herrn Univ.-Prof. Dipl.-Ing. Dr. mont. Helmut Clemens, Vorstand des Department Metallkunde und Werkstoffprüfung der Montanuniversität Leoben, für die Ermöglichung dieser Diplomarbeit sowie für die Durchsicht und Korrektur des Manuskripts.

Ganz besonderer Dank gebührt meinem Betreuer am MCL DI Michael Zuber für die unzähligen Diskussionen und Anregungen, die oft in die Diplomarbeit eingeflossen sind. Weiters sei meinem Betreuer an der Montanuniversität Leoben Herrn Dr. Harald Leitner für seine Hilfestellung und Diskussionsbereitschaft herzlich gedankt.

Bedanken möchte ich mich aber auch bei allen Mitarbeitern des Department Metallkunde und Werkstoffprüfung für die freundliche Unterstützung, besonders bei Frau Silvia Pölzl in der Metallographie und Herrn Gerhard Hawranek am Rasterelektronenmikroskop, ohne den die beeindruckenden Gefügebilder in dieser Arbeit nicht möglich gewesen wären.
Inhaltsverzeichnis

1 Einleitung und Zielsetzung .. 1
 1.1 Allgemeines ... 1
 1.2 Zielsetzung und Vorgehensweise ... 2

2 Herstellungsroute ... 3

3 Gefüge und Eigenschaften von Schnellarbeitsstählen ... 4
 3.1 Legierungskonzept der Schnellarbeitsstähle ... 6
 3.2 Gefügeausbildung .. 7
 3.2.1 Hartphasen (Karbide) ... 7
 3.2.2 Nichtmetallische Einschlüsse ... 11
 3.3 Auswirkungen der pulvermetallurgischen Herstellroute auf Gefüge und Eigenschaften ... 12
 3.4 Wärmebehandlung .. 14
 3.4.1 Weichglühen .. 15
 3.4.2 Härten .. 15
 3.4.3 Anlassen .. 18
 3.5 Mechanische Eigenschaften der Schnellarbeitsstähle ... 20
 3.5.1 Härte .. 20
 3.5.1.1 Härte - Anlassverhalten .. 21
 3.5.1.2 Warmhärte .. 23
 3.5.2 Druckfestigkeit (Druckbelastbarkeit) .. 26
 3.5.3 Zähigkeit .. 26
 3.5.3.1 Rissinitiierung und Rissausbreitung ... 29

4 Versuchsablauf ... 35
 4.1 Ausgangsmaterial ... 35
 4.2 Pulverpräparation .. 37
 4.3 Gefüge und Phasenanalyse .. 38
 4.4 Mikroskopie ... 39
 4.5 Probenherstellung und Wärmebehandlung .. 39
 4.5.1 Härtedummys .. 39
 4.6 Zugversuche ... 41
 4.6.1 Zugproben ... 42
 4.7 K_{IC} – Prüfung .. 43
 4.7.1 K_{IC} - Proben .. 44
 4.8 Härtemessung ... 44
 4.9 Computertomographie .. 45

5 Ergebnisse ... 47
 5.1 Verdüstes Pulver .. 47
 5.1.1 Morphologie .. 47
5.1.2 Pulveroberfläche ..51
5.1.3 Gefüge ..53
 5.1.3.1 Erstarrungsstruktur der Pulverteilchen ...56
 5.1.3.2 Abschätzung der Erstarrungsgeschwindigkeit ..62
5.2 Gehipter Stahl ..64
 5.2.1 Computertomographie ..65
 5.2.2 Auswirkungen der Pulverfraktionen auf das Gefüge im gehipten Zustand68
 5.2.3 Auswirkung der Pulverfraktion auf die Härte des gehipten Materials73
5.3 Stabstahl gehärtet ..75
 5.3.1 Mikrostruktur des gehärteten Zustandes ...75
 5.3.2 Korngröße ..76
5.4 Härte - Anlassverhalten ...78
 5.4.1 Härte - Anlasskurve des S290PM Standard ..78
 5.4.2 Vergleich der Pulverfraktionen ...80
5.5 Karbidgrößenverteilung des vergüteten Zustandes ..81
5.6 Ergebnisse der Zugversuche ...83
5.7 Ergebnisse der Bruchzähigkeitsbestimmung ...86

6 Diskussion der Ergebnisse ..88
 6.1 Porosität im Pulver ...88
 6.2 Mechanische Prüfung ...91
 6.2.1 Zugversuche ...91
 6.2.2 Bruchzähigkeit ..97

7 Zusammenfassung ..103

8 Literaturverzeichnis ...105
1 Einleitung und Zielsetzung

1.1 Allgemeines

Die Einteilung der Werkzeugstähle erfolgt meist nach der Anwendung in Warmliegegerstähle, Kaltarbeitsstähle, Kunststoffformenstähle und Schnellarbeitsstähle.

Die Herstellung der Schnellarbeitsstähle kann sowohl schmelzmetallurgisch durch Blockguss als auch pulvermetallurgisch durch Gasverdüsung erfolgen. Die Vorteile der pulvermetallurgischen Herstellroute sind auf die über diesem Weg realisierbaren höheren Legierungsgehalte und der höheren Abkühlgeschwindigkeit der kleinen Pulverpartikel bei der Erstarrung zurückzuführen.

Der Begriff Schnellarbeitsstahl bezieht sich auf die hohen Schnittleistungen, welche nur mit dieser Werkzeugstahlgruppe erzielt werden können.

1.2 Zielsetzung und Vorgehensweise

Nachfolgend ist die chemische Zusammensetzung des BÖHLER S290PM Schnellarbeitsstahles angegeben:

Tabelle 1.1: Chemische Zusammensetzung des Schnellarbeitsstahles S290PM (Gehalte der Legierungselemente in m.%)

<table>
<thead>
<tr>
<th>Böhler Bez.</th>
<th>*DIN Norm</th>
<th>C</th>
<th>W</th>
<th>Mo</th>
<th>V</th>
<th>Co</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>S290PM (PM HS14-2-5-11)</td>
<td>2.0 14.3 2.5 5.1 11.0 0.5 0.3</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Um den Einfluss der Pulvergröße auf die mechanischen Eigenschaften zu untersuchen, werden Gefügeuntersuchungen in jedem Stadium der Produktion vom Pulver bis zum umgeformten und wärmebehandelten Zustand durchgeführt. Außerdem werden die mechanischen Eigenschaften der Stähle verschiedener Pulverfraktionen über Zugversuche, Bruchzähigkeitsversuche und Härte-Anlasskurven verglichen.

Die Erkenntnisse dieser Untersuchungen sollen zeigen, welches Verbesserungspotential hinsichtlich der mechanischen Eigenschaften in kommerziell verfügbaren Schnellarbeitsstählen, wie dem S290PM, noch vorhanden ist. Die Untersuchungen in dieser Arbeit beschränken sich zwar nur auf den Werkstoff S290PM der BÖHLER Edelstahl Gruppe, allerdings sollte es möglich sein, die
Ergebnisse tendenziell auch auf Schnellarbeitsstähle mit ähnlichen Legierungskonzepten zu übertragen.

2 Herstellungsroute

Bei der Herstellung von Schnellarbeitsstählen unterscheidet man die beiden Prozessrouten:

- schmelzmetallurgische Fertigung
- pulvermetallurgische Fertigung

Bei der konventionellen schmelzmetallurgischen Fertigung wird die Stahlschmelze im Block- oder Stranggussverfahren abgegossen. Die pulvermetallurgische Fertigung verbindet die Schritte Schmelzen, Verdüsen (= Zerteilen der Schmelze in kleine Tropfen) und Erstarrung in einem Verfahren. Jeder Tropfen kann dabei als winziger Gussblock aufgefasst werden, der in der Verdüsningskammer auf dem Weg nach unten, im freien Fall, mit hoher Geschwindigkeit erstarrt.

Höchste Anforderungen an Härte und Zähigkeit erfordern eine feine, homogene Karbidverteilung, welche nur über die pulvermetallurgische Herstellroute erreichbar ist. So sind die derzeit verfügbaren Schnellarbeitsstähle mit höchsten Härten ledeburitische Stähle, die über die pulvermetallurgische Route (abgek. PM - Route) hergestellt werden.

Die immer stärker werdende Konkurrenz der Hartmetalle, insbesondere der Feinkornhartmetalle, und die ständig steigenden Kundenwünsche hinsichtlich Warmhärte, Zähigkeit und Lebensdauer erfordern die ständige Neuentwicklung und Weiterentwicklung von Schnellarbeitsstählen.

Um den Bedarf an derartigen hochleistungs- Schnellarbeitsstählen zu decken, hat das Unternehmen BÖHLER Uddeholm AG am Standort Kapfenberg bereits im Jahr 1999 eine der bis heute weltweit modernsten Gas - Verdüsungsanlagen errichtet.

Abb. 2.1 zeigt die prinzipielle Herstellroute vom Erschmelzen des Stahles im Induktionsofen, über das Verdüsen mit Stickstoff, bis hin zum Füllen des Stahlpulvers in Kapseln aus Stahlblech. Pulverteilenchen mit einem Durchmesser von über 500 μm werden vor dem Befüllen der Kapseln ausgesiebt. Die evakuierten und verschweißten Kapseln werden dann durch heißisostatisch Pressen zu einem Block

Abb. 2.1: Stofffluss der PM - Stahlproduktion bei BÖHLER Edelstahl in Kapfenberg [2]

3 Gefüge und Eigenschaften von Schnellarbeitsstählen

Aus den im Einsatz möglichen Belastungen folgt direkt das geforderte Eigenschaftsprofil der Schnellarbeitsstähle [2]:

Anforderungen in der Zerspanung:
- Verschleißwiderstand
- Druckbelastbarkeit
- Härte, Warmhärte

Anforderungen in der Kaltumformtechnik:
- Verschleißwiderstand
- Druckbelastbarkeit
- Zähigkeit
In beiden Anwendungsbereichen ist demnach ein harter Werkstoff mit einem hohen Widerstand gegen Bruch gefordert [4].

Die mechanischen Eigenschaften der Schnellarbeitsstähle werden im Wesentlichen durch die chemische Zusammensetzung und dem damit eng verbundenen Werkstoffgefüge vorgegeben. Wie in den nächsten Abschnitten gezeigt wird, hat aber auch das Herstellverfahren einen großen Einfluss auf die Eigenschaften und Qualität des fertigen Werkzeugs. Darüber hinaus können die Eigenschaften durch die abschließende Wärmebehandlung in weiten Grenzen variiert und so dem jeweiligen Einsatzgebiet optimal angepasst werden. Abb. 3.1 gibt einen Überblick darüber, wie sich die Eigenschaften der Schnellarbeitsstähle beeinflussen lassen und welche mikrostrukturellen Bestandteile einen Einfluss auf die mechanischen Eigenschaften ausüben.

Chemische Zusammensetzung des Stahles

- Kohlenstoffgehalt
- Legierungselemente

Herstellprozess

Wärmebehandlung

- Volumenanteil der Karbide
- Größe der Karbide und Karbidcluster
- Gefügebestandteile
- Korngröße

MIKROSTRUKTUR

MECHANISCHE EIGENSCHAFTEN

ZUVERLÄSSIGKEIT

LEBENSDAUER

Abb. 3.1: Einflüsse auf die mechanischen Eigenschaften der Schnellarbeitsstähle [5]
3.1 Legierungskonzept der Schnellarbeitsstähle

Die Schnellarbeitsstähle gehören zur Gruppe der ledeburitischen Stähle, d.h. die Erstarrung der Schmelze endet mit der Bildung eines niedrigschmelzenden Eutektikums aus Austenit und Karbid [6].

Das Legierungskonzept der Schnellarbeitsstähle basiert auf martensitischer Härting und der Zugabe von stark karbidbildenden Elementen. Die karbidbildenden Elemente sind neben Kohlenstoff und Eisen die wichtigsten Bestandteile der Schnellarbeitsstähle.

Nach Waschul [7] lassen sich die wichtigsten karbidbildenden Elemente nach ihrer Karbidbildungsfähigkeit wie folgt einteilen:

\[
\text{Nb} > \text{Ti} > \text{W} > \text{Mo} > \text{V} > \text{Cr} > \text{Mn} \quad \text{(stark → gering)}
\]

Der hohe Gehalt an Legierungselementen senkt die Martensitstarttemperatur der Schnellarbeitsstähle. Das bedeutet, dass sich beim Abkühlen aus dem Austenitgebiet auch vermehrt Restaustenit bildet. Als Voraussetzung für eine gute Durchhärbarkeit gilt ein Mindestgehalt von etwa 4% Chrom.

Der Martensit kann beim Erwärmen (genannt Anlassen) den Kohlenstoff unter Bildung von Karbiden freisetzen (siehe Kap. 3.4).

Die Entwicklung des ersten Schnellarbeitsstahles begann vor über 100 Jahren mit dem Ziel, einen Werkstoff herzustellen, der es erlaubt, Metalle bei hohen Arbeitstemperaturen mit minimalem Werkzeugverschleiß spanabhebend zu bearbeiten [8].

Neben dem nach wie vor am häufigsten eingesetzten HS6-5-2, Marktanteil etwa 70%, kann der Kunde heute aus einer breiten Palette verschiedener Schnellarbeitsstahltypen wählen. Trotz der Vielzahl an verfügbaren Stahlsorten unterschiedlichster chemischer Zusammensetzung lassen sich auch neue Legierungen auf wenige, sich kaum unterscheidende Sorten zurückführen. Die Grundsorten, aus denen viele neuere Legierungen entwickelt wurden, zeigt Tabelle 3.1 [6].
Tabelle 3.1: Legierungskonzept der drei Schnellarbeitsstahl - Grundsorten [6]

<table>
<thead>
<tr>
<th>Grundsorte</th>
<th>C [m.%]</th>
<th>W [m.%]</th>
<th>Mo [m.%]</th>
<th>V [m.%]</th>
<th>Cr [m.%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>18</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>-</td>
<td>9</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>6</td>
<td>5</td>
<td>1 - 2</td>
<td>4</td>
</tr>
</tbody>
</table>

Die Schwierigkeit in der Entwicklung neuer Schnellarbeitsstähle besteht nun in der richtigen Verteilung der Legierungselemente zwischen Matrix und Karbiden, um nach der Wärmebehandlung die für die Anwendung optimalen Karbidtypen und -mengen zu erzielen [9].

Das **Legierungskonzept des S290PM** (chem. Zusammensetzung siehe Tabelle 1.1) zielt darauf ab, die Lücke zwischen den ebenfalls erhältlichen konventionellen Schnellarbeitsstählen und den wesentlich festeren Hartmetallen zu schließen. Dabei sollen die vorteilhaften Eigenschaften konventioneller Schnellarbeitsstähle, besonders die gegenüber Hartmetallen bessere Zähigkeit und Verarbeitbarkeit, mit Eigenschaften der Hartmetalle, wie die sehr hohe Härte, Warmhärte und überragende Verschleißbeständigkeit kombiniert werden [10].

Beim S290PM soll das durch die Nutzung der PM-Technologie und einem sehr hohen Gehalt an stark karbidbildenden Elementen, die zur Ausbildung thermisch stabiler MC und M6C Karbide führen, erreicht werden.

3.2 Gefügeausbildung

3.2.1 Hartphasen (Karbide)

Die Karbidbildung bei der Erstarrung von ledeburitischen Werkzeugstählen erfolgt meistens durch eine eutektische Reaktion, bei der sich Karbide und Austenit gemeinsam aus der Schmelze ausscheiden [12]. Bei hohen Abkühlraten, wie sie bei der pulvermetallurgischen Herstellung auftreten, kann es zur Unterdrückung der eutektischen Karbidreaktion kommen, was zu der schon erwähnten feinen und gleichmäßigen Karbidverteilung führt. Die Keimbildung der Karbide erfolgt, eine
ausreichende thermodynamische Treibkraft vorausgesetzt, immer heterogen an Defekten der Kristallstruktur [13].

Der Volumenanteil und der Typ an Primärkarbiden wird bereits durch die chemische Zusammensetzung der Schmelze festgelegt [17]. Dabei ist leicht einzusehen, dass ein zunehmender Gehalt an Kohlenstoff und karbidbildender Elemente (W, Mo, V, Nb, Cr) den Gehalt an Primärkarbiden signifikant erhöht [18].

Mit einer Erhöhung der Abkühlgeschwindigkeit nimmt der Anteil von MC auf Kosten von M₂C zu [15].

Lichtenegger [14] fasst den Einfluss der Legierungselemente auf die Ausbildung des Ledeburiteutektikums wie folgt zusammen (Tabelle 3.2):

Tabelle 3.2: Einfluss der Legierungselemente und der Abkühlrate auf die Ausbildung des Ledeburiteutektikums [14]

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>W/Mo</th>
<th>V</th>
<th>Si</th>
<th>N</th>
<th>Nb</th>
<th>Kühlrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₂C</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M₆C</td>
<td>-</td>
<td>+</td>
<td>-/+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Definition: +… Bildung begünstigt, +/-… unverändert, -… Bildung verringert

Tabelle 3.2 zeigt, dass durch eine Erhöhung des Kohlenstoffgehaltes und der Abkühlrate die Bildung von M₂C begünstigt wird. Dagegen ist bei einer Erhöhung des W/Mo Verhältnisses und der Legierungselemente Si, N und Nb vermehrt mit dem Auftreten von M₆C Karbiden zu rechnen.

Tabelle 3.3 fasst die wichtigsten Eigenschaften der in Schnellarbeitsstählen häufig vorkommenden Karbidtypen zusammen:
Tabelle 3.3: Härte, Struktur und Eigenschaften der wichtigsten Karbide in Werkzeug- und Schnellarbeitsstählen \[1,12,15,22,23\]

<table>
<thead>
<tr>
<th>Karbidtyp</th>
<th>Gittertyp</th>
<th>Härte [HV]</th>
<th>Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>kfz</td>
<td>2800-3000</td>
<td>V reich, Fe arm; hohe thermische Stabilität; der geringe Anteil, der sich beim Härten auflöst, kann als Sekundärhärtekarbide wieder ausgeschieden werden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MC - Karbidbildner: V, Nb, Ti, (Zr, Hf, Ta)</td>
</tr>
<tr>
<td>M(_2)C</td>
<td>hexagonal</td>
<td>1800</td>
<td>reich an Mo, W, Cr, Fe; metastabil; Bildung gefördert durch Mo</td>
</tr>
<tr>
<td>M(_3)C</td>
<td>orthorhombisch</td>
<td>900</td>
<td>M kann Fe, Mn, Cr, mit wenig W, Mo, V sein; Zementit (Fe(_3)C) Typ; Fe arm; nicht thermodynamisch stabil (in Werkzeugstählen Ungleichgewichtskarbide)</td>
</tr>
<tr>
<td>M(_6)C</td>
<td>kfz</td>
<td>1500</td>
<td>Fe, W- o. Mo-reiches Karbid; kann geringe Gehalte an Cr, V und Co enthalten; extrem abrasionsbeständig; im Gussgefüge fischgrätenförmig</td>
</tr>
<tr>
<td>M(_{23})C(_6)</td>
<td>kubisch (komplex)</td>
<td>1200-1600</td>
<td>reich an Cr, Fe, Mo, W; kommt in allen HS vor, hauptsächlich als Glühkarbide; entsteht auch beim Anlassen (bei hoher Temperatur); metastabil</td>
</tr>
<tr>
<td>M(_7)C(_3)</td>
<td>hexagonal</td>
<td>1500</td>
<td>häufig in Cr legierten Stählen; thermisch beständig; sehr abrasionsbeständig</td>
</tr>
</tbody>
</table>

Im Folgenden soll auf einige Besonderheiten der Karbide im Gussgefüge der Schnellarbeitsstähle eingegangen werden:

M\(_2\)C: Tabelle 3.3 gibt an, dass es sich bei M\(_2\)C um ein metastabiles Karbid handelt. Das bedeutet, das M\(_2\)C Karbid ist im Unterschied zu den temperaturbeständigen MC und M\(_6\)C Karbiden nicht thermisch stabil. Karagöz et al. \[11\] geben für den Zerfall des M\(_2\)C Karbids bei erhöhten Temperaturen folgende schematische Reaktionsgleichung (ohne Berücksichtigung der Stöchiometrie) an:

\[
M_2C + \gamma\text{-Fe} \rightarrow M_6C + MC \quad (\text{Glg. 3-1})
\]

Wie die Reaktionsgleichung zeigt, reagiert das metastabile M\(_2\)C Karbid bei erhöhter Temperatur (z.B.: Hip-Prozess oder Warmumformen) mit der austenitischen Matrix in die Gleichgewichtskarbide MC und M\(_6\)C. Die Anteile an V, Mo, W und Cr im M\(_2\)C Karbid bestimmt dabei das Mengenverhältnis der Zerfallsprodukte M\(_6\)C und MC und die Vorfaktoren der Produkte in Glg. 3-1 \[15\].

Darüber hinaus kann M\(_2\)C auch als Sekundärhärtekarbide beim Anlassen ausgeschieden werden (siehe Kap. 3.4.3).
M_6C: M_6C Karbide werden meist während der eutektischen Reaktion ausgeschieden. Wenn M_6C Karbide nicht bereits in Form des Ledeburiteutektikums in der Gussstruktur vorkommen, können sie auch bei Glühbehandlungen aus der übersättigten Matrix, oder wie bereits besprochen durch Zerfall des M_2C Karbids entstehen [14].

MC: Außer der Möglichkeit, dass MC Karbide direkt aus der Schmelze ausgeschieden werden, kann ihre Bildung auch auf folgende Weise erfolgen [24]:

- Ausscheidung zwischen Liquidus- und eutektischer Temperatur
- Ausscheidung während der eutektischen Reaktion
- Ausscheidung während des M_2C - Karbidzerfalls
- Ausscheidung aus der festen Phase (z.B. Martensit) als Sekundärhärtekarbide

3.2.2 Nichtmetallische Einschlüsse

Allgemein können die nichtmetallischen Einschlüsse der Schnellarbeitsstähle in endogene und exogene Einschlüsse unterteilt werden. Unter **endogene Einschlüsse** werden Desoxidationsprodukte aus der Schmelze oder Ausscheidungen, die sich während der Erstarrung bilden, verstanden. Aufgrund der extrem raschen Erstarrungsgeschwindigkeit in der Pulvermetallurgie sind diese Einschlüsse sehr klein und damit weniger gefährlich als exogene Einschlüsse.

Exogene Einschlüsse sind Schlacke oder Oxide, welche in die Schmelze eingeschlossen werden [25]. Ihr Ursprung ist meist der Tundish oder die Schüttdüse, da hier oft keramische Feuerfestauskleidung eingesetzt wird [26].

Die Hauptursache für nichtmetallische Einschlüsse in der Pulvermetallurgie ist die Schlacke, die an der Oberfläche der Schmelze im Tundish (siehe Abb. 2.1) schmilzt, oder Schlacke, die aus dem Induktionsofen mitgerissen wurde [27]. Bei Schnellarbeitsstählen aus verdünnten Pulvern können zusätzlich zu endogenen und exogenen Einschlüssen Oxidschichten an der Pulverteilchenoberfläche zu Oxideinschlüssen im fertigen Stahl führen. Die Oxidschichten der Pulverteilchen wirken so noch im verdichtetem Werkstoff als Defekte, welche die mechanischen Eigenschaften ungünstig beeinflussen [28]. Untersuchungen zeigen, dass feine Pulver, bedingt durch ihre sehr große Oberfläche, höhere Sauerstoffgehalte als

Der Gehalt an Schlackeeinschlüssen im Stahl aus dem Tundish wurde bei BÖHLER Edelstahl durch Einführung eines ESH (Electro Slag Heating) Tundish mit 8 Tonnen Fassungsvermögen, der die Schmelze gegen Oxidation schützt und während des Verdüsnungsprozesses nicht nachgefüllt werden muss, minimiert [27].

3.3 Auswirkungen der pulvermetallurgischen Herstellroute auf Gefüge und Eigenschaften

Wie bereits in Kapitel 2 erwähnt wurde, zeigt die Karbidverteilung jedes Schnellarbeitsstahles bei gleicher chemischer Zusammensetzung große Unterschiede, je nachdem ob die Herstellung schmelzmetallurgisch oder pulvermetallurgisch erfolgt. Die Mikrostruktur der pulvermetallurgisch hergestellten Schnellarbeitsstähle zeigt sehr feine Karbide, die sehr homogen verteilt sind. Im Gegensatz dazu führt die herkömmliche Herstellung über Blockguss zu sehr groben und zeilig angeordneten Primärkarbiden. Dieser Unterschied folgt aus der bei der pulvermetallurgischen Verfahrensroute wesentlich schnelleren Abkühlgeschwindigkeit, die sich aus den geringen Volumina der einzelnen Pulverteilchen ergibt.

Typischerweise sind Metallpulver, die durch Gasverdüsung einer Schmelze hergestellt wurden, überwiegend kugelförmig mit einem mittleren Durchmesser von ca. 100 μm [30]. Die genaue Teilchengrößenverteilung hängt von der Anlage und den Prozessbedingungen ab. Kugelförmige Pulverteilchen sind vorteilhaft für eine hohe und gleichmäßige Fülldichte der HIP - Kapsel. Die Pulverteilchenoberflächen

Im Gegensatz dazu reicht die Abkühlgeschwindigkeit in der Schmelzmetallurgie (ca. 10^{-3} K/s bis 10 K/s [31]) nicht aus, um die Hartphasen einer Legierung in feiner Verteilung zu halten, die bei langsamer Abkühlung aufgrund der Schwerkeseigerung grob entmischen oder über Kristallisation und Seigerung zur Vergröberung neigen (z.B. Karbide in Schnellarbeitsstählen) [28]. Die so entstehenden groben eutektischen Karbidstrukturen lassen sich beim weiteren Umformen kaum beseitigen. Nach Roberts [23] wäre beim Warmwalzen ein Reduktionsverhältnis von 100:1 erforderlich, um eine absolut gleichmäßige Karbidstruktur zu erzielen. Da dieses Reduktionsverhältnis nicht erreicht werden kann, werden die groben eutektischen Karbide beim Umformen (Walzen, Schmieden) zwar zertrümmert, aber gleichzeitig zeilig in Verformungsrichtung angeordnet [14]. Nach der Umformung zeigen diese Werkstoffe signifikante Anisotropien in ihren mechanischen Eigenschaften.

Der Hauptvorteil der pulvermetallurgischen Schnellarbeitsstähle liegt also in ihrer feinen und homogenen Karbidverteilung, die insbesondere bei hohem Karbidgehalt über Schmelzen und Gießen nicht erreicht werden kann. Eine Anhebung des Kohlenstoffgehalts und der karbidbildenden Elemente würde bei schmelzmetallurgischer Herstellung unweigerlich zur Ausbildung grober Eutektika, oder zur Ausscheidung grober Karbide aus der Schmelze führen [34]. Die daraus resultierenden Makroseigerungen führen zu Problemen beim Warmumformen.

Zusammengefasst ergeben sich folgende Vorteile der höher legierten pulvermetallurgischen Stähle gegenüber schmelzmetallurgisch hergestellten Schnellarbeitsstählen [35]:
- bessere isotrope Eigenschaften
- keine Makrosegregation
- bessere Bearbeitbarkeit, Schleifbarkeit
- erhöhte Werkzeug - Lebensdauer
- verbesserte Härte und Härtbarkeit
- erhöhte Zähigkeit (bei gleicher Härte)
- geringerer Verzug bei Wärmebehandlungen
- bessere Warmumformbarkeit (ermöglicht hohen Karbidgehalt)
- bessere Verschleißbeständigkeit (ermöglicht durch höheren Karbidgehalt)
- besseres Substrat für Beschichtung [36]

Heute ist bekannt, dass die Qualität des Ausgangsmaterials, sei es ein Gussblock oder das durch Verdüsing gewonnene Pulver, auch entscheidend für die Qualität und Lebensdauer des fertigen Werkzeugs ist. Daher war das größte Anliegen der Stahlhersteller in den letzten Jahren die Größe der Primärkarbide und nichtmetallische Einschlüsse, die als bruchauslösende Defekte wirken können, zu reduzieren. Beides konnte mit der pulvermetallurgischen Herstellroute durch die hohe Erstarrungsgeschwindigkeit, die moderne Tundish Technologie und ESH (Electro Slag Heating) vor der Gasverdüsung erreicht werden [27].

3.4 Wärmebehandlung

Neben der Veränderung der chemischen Zusammensetzung können die endgültigen mechanischen Eigenschaften der Schnellarbeitsstähle durch die abschließende Wärmebehandlung eingestellt werden. Das Hauptaugenmerk liegt dabei auf der Einstellung einer optimalen Kombination aus Härte und Zähigkeit.

Die Wärmebehandlung von Schnellarbeitsstählen ist ein mehrstufiger Prozess und verläuft prinzipiell für alle Schnellarbeitsstähle ähnlich.

Ausgehend von dem Stahl im weichgeglühten Zustand wird wie folgt vorgegangen:

1. **Erwärmen**, um Austenit zu bilden (Austenitisieren)
2. **Abschrecken**, um den Austenit in Martensit umzuwandeln, und
Diesen abschließenden Wärmebehandlungsprozess für Schnellarbeitsstähle zeigt schematisch Abb. 3.3:

Abb. 3.3: Schematische Darstellung der Zeit-Temperatur-Folge beim Härten und Anlassen von Werkzeugen aus Schnellarbeitsstahl [37]

3.4.1 Weichglühen

3.4.2 Härten

Wird der weichgeglühte Werkstoff erwärmt, wandelt die ferritische Matrix beim Überschreiten der $\alpha \rightarrow \gamma$ - Transformationstemperatur vollständig in Austenit um. Der Härtingsprozess der Werkzeugstähle (vgl. Abb. 3.3) basiert dann auf einer Phasentransformation des Austenits zu Martensit beim Abschrecken. Der Austenitisierungstemperatur und der Haltezeit auf dieser Temperatur kommt eine große Bedeutung zu, da nur die beim Austenitisieren aufgelösten Karbide nach dem Härten bei erneuter Erwärmung wieder ausgeschieden werden können und so die Sekundärhärting bewirken. Eine homogene Verteilung kleiner Primärkarbide ist vorteilhaft, denn feinere Karbide zeigen beim Austenitisieren eine größere Tendenz
zur Auflösung und führen dadurch zwangsläufig zu einer höheren Sekundärhärte [39].

Das **Aufheizen** auf die Austenitisierungstemperatur sollte langsam erfolgen, um Rissbildungen durch inhomogene Wärmeausdehnung zu vermeiden. Ziel ist es, möglichst viele Legierungselemente im Austenit aufzulösen. Um die thermischen Spannungen so gering wie möglich zu halten, werden zwei bis drei Vorwärmstufen empfohlen (vgl. Abb. 3.3) [40].

Die optimale **Härtetemperatur** der Schnellarbeitsstähle für Schneidapplikationen liegt knapp unter der Solidustemperatur und ist von der chemischen Zusammensetzung des Stahls abhängig. Diese hohe Austenitisierungstemperatur ist bei Schnellarbeitsstählen notwendig, um auch die hochlegierten primären Karbide MC und M6C teilweise in Lösung zu bringen [41]. Je mehr Legierungselemente in Lösung gebracht werden, desto höher fällt der Sekundärhärteeffekt beim nachfolgenden Anlassen aus (siehe 3.4.3 und 3.5.1).

Eine zu hohe Härtetemperatur führt allerdings auch zu unerwünschtem Austenitkornwachstum, auch wenn das Kornwachstum durch unaufgelöste Hartphasen gebremst wird [38]. Ein hoher Gehalt an stabilen Karbiden im Stahl sorgt so für eine kleinere Korngröße.

Untersuchungen von Wilmes [42] zeigen, dass der Gehalt an unaufgelösten Karbiden mit zunehmender Austenitisierungstemperatur abnimmt und die Abnahme etwa linear mit der Härtetemperatur erfolgt (siehe Abb. 3.4).

Die optimale Haltezeit auf Härtetemperatur richtet sich nach der Höhe der Temperatur und der Probengröße. Eine zu lange Haltezeit (Überzeiten) kann ähnliche unerwünschte Erscheinungen (z.B. Kornvergröberung) hervorrufen wie ein Überhitzen [43].

Bei genügend hoher Abkühlgeschwindigkeit (Abschrecken) nach dem Halten findet eine Phasentransformation des Austenits zu Martensit statt. Da die Martensitbildung, bedingt durch die hohe Abkühlrate, eine „diffusionslose“ Umwandlung darstellt, tritt

Abb. 3.4: Gehalt an unaufgelösten Karbiden in verschiedenen Werkzeugstählen im weichgeglühten und austenitisierter Zustand [42]

Bei zu langsamer Abkühlung von der Här tetemperatur kann es im Temperaturbereich zwischen 800 - 1000°C zur Ausscheidung von den in Kap. 3.2.1 besprochenen voreutektoiden Karbiden kommen, welche sich negativ auf das Sekundärhärtepotenzial und die Zähigkeit auswirken [44].

3.4.3 Anlassen

Eine adäquate Duktilität und Zähigkeit der Matrix wird durch mehrfaches Anlassen erreicht. Eine Anlasstemperatur knapp über dem Sekundärhärtemaximum (z.B. 20°C darüber) gilt als optimal hinsichtlich Härte und Zähigkeit der Matrix [6].

Die typische Anlasstemperatur liegt für hochlegierte Werkzeugstähle bei 500 - 570°C und damit weit über der Anlasstemperatur für Kohlenstoffstähle. Die höhere Anlasstemperatur für Schnellarbeitsstähle wird durch die geringe Diffusivität der substitutionellen Sekundärhärtekarbid - bildenden Elemente wie Vanadium, Molybdän, Chrom und Wolfram verursacht [4].

Der Sekundärhärteeffekt beruht also sowohl auf der Umwandlung von Restaustenit zu Martensit, als auch auf der Ausscheidung von sehr feinen Sekundärhärtekarbiden beim Anlassen [41].

Zusammengefasst hat das Anlassen von Schnellarbeitsstählen folgende Auswirkungen auf die mechanischen Eigenschaften:

- Anpassung von Härte und Zähigkeit entsprechend der Anwendung
- Verbesserung der Zähigkeit und damit der Rissgefahr
- Abnahme der Eigenspannungen, die durch das Abschrecken entstehen

Nach dem Härten und Anlassen besteht das Gefüge eines Schnellarbeitsstahles aus einer zähen (angelassenen) martensitischen Matrix, mit zahlreichen darin eingebetteten, weitgehend homogen verteilten Primärkarbiden im µm- Maßstab und Sekundärhärtekarbiden im nm- Maßstab.
3.5 Mechanische Eigenschaften der Schnellarbeitsstähle

3.5.1 Härte

Die Härte lässt Rückschlüsse auf die Belastbarkeit und die Formbeständigkeit eines Werkzeuges zu und muss deshalb mindestens so hoch sein, dass die mit ihr in Zusammenhang stehende Fließgrenze über der höchsten Beanspruchungsspannung am Werkzeug liegt [19]. Den für alle Werkzeugstähle gültigen Zusammenhang zwischen Härte und Fließgrenze zeigt Abb. 3.5:

Abb. 3.5: Zusammenhang zwischen Härte und Biegefließgrenze gehärteter Werkzeug- und Schnellarbeitsstähle [6]. Die gestrichelten Linien zeigen ungenügendes Anlassen an, dass zu verformunglosen Brüchen unterhalb der theoretischen Fließgrenze führt.

Durch eine Erhöhung der Härte werden andere Kenngrößen negativ beeinflusst. So wird in der Regel eine Abnahme der Zähigkeit mit zunehmender Härte festgestellt (siehe Kap. 3.5.3). Härte und Zähigkeit sind in diesem Sinne gegenläufige Eigenschaften.

Bei gegebener chemischer Zusammensetzung hängt die Härte vom Gefügeaufbau des eingesetzten Stahls ab. Eisenbasiswerkstoffe wie die Schnellarbeitsstähle zeigen sowohl eine Verfestigung durch Substitutionsmischkristalle, die auch bei hoher Temperatur wirksam bleibt, als auch durch Ausscheidungshärtung [17].

Die hohe Härte der Schnellarbeitsstähle ist auf die hohe Härte der Karbide (siehe Kap. 3.2.1) und der martensitischen Matrix zurückzuführen. Der Martensit besitzt als Gefügebestandteil eine Härte von ca. 840 - 1100 HV [7].

Diese hohe Härte des Martensits wird durch die dünnen Latten der martensitischen Struktur (unter 0.1 µm) und der hohen Versetzungsdichte, die durch das

Die Mischkristallverfestigung beruht auf Legierungselementen, die keine Karbide bilden oder in Ausscheidungen abgebunden sind (C, Mn, Si, Co usw.) [13].

Eine in der Literatur oft angegebene Beziehung zwischen der Streckgrenze (\(\sigma_y\)) und der Mikrostruktur, die alle Mechanismen die einen Anteil an der Festigkeit des Schnellarbeitsstahles beinhaltet, lautet [46]:

\[
\sigma_y = \sigma_0 + \sigma_{MK} + \sigma_V + \sigma_P + \sigma_{KG} + \sigma_{Verbund} \quad \text{(Glg. 3-2)}
\]

- \(\sigma_0\): Fließgrenze des reinen Ferrits
- \(\sigma_{MK}\): Festigkeitssteigerung durch Mischkristallhärtung
- \(\sigma_V\): Festigkeitssteigerung durch Versetzungen
- \(\sigma_P\): Festigkeitssteigerung durch Ausscheidungen und Teilchen
- \(\sigma_{KG}\): Festigkeitssteigerung durch Korngrenzen
- \(\sigma_{Verbund}\): Festigkeitssteigerung durch Verbundwirkung

Neben der Ausscheidungshärtung und Mischkristallbildung sind bei Schnellarbeitsstählen noch die Mechanismen der Kaltverfestigung und Kornfeinung zu erwähnen, die zwar eine Festigkeitssteigerung bewirken, aber im vergüteten Zustand verglichen mit der Mischkristallverfestigung von geringerer Bedeutung sind [46].

3.5.1.1 Härte - Anlassverhalten

Dieser Abschnitt beschäftigt sich mit dem Anlassverhalten der Werkzeugstähle, also mit der Thematik, wie sich die Härte ausgehend von einem Stahl im gehärteten Zustand bei Temperaturerhöhung verändert und worauf diese Änderung zurückzuführen ist. Die Abb. 3.6 vergleicht dazu die Härte verschiedener Werkzeugstähle in Abhängigkeit von der Temperatur.
Abb. 3.6: Anlasskurven gebräuchlicher Warmarbeits- und Schnellarbeitsstähle
(Warmarbeitsstähle: X 20 CoCrWMo10 9, X 40 CrMoV5 1, 56 NiCrMoV 7
(niedriglegiert), HS: S 6-5-2, S 10-4-3-10) [19]

Die Ansprunghärte der Warmarbeitsstähle in Abb. 3.6 ist aufgrund ihres niedrigeren
Kohlenstoffgehaltes geringer als jene der Schnellarbeitsstähle. Wie in der Abbildung
weiter ersichtlich ist, besitzen die Schnellarbeitsstähle und Warmarbeitsstähle
gegenüber den Kohlenstoffstählen eine Besonderheit: Ihre Härte nimmt zunächst ab,
steigt dann aber kurz an, bevor sie bei Temperaturen über 600°C schließlich schnell
abfällt.
Der Anstieg der Härte ist auf die Ausscheidung der in Kap. 3.4.3 erläuterten
Sekundärhärtekarbide und auf die schon erwähnte Restaustenitumwandlung zu
Martensit zurückzuführen. Die Wirkung der Sekundärhärtekarbide zeigt die
Untersuchung von Ebner et al. [4] am Werkstoff HS10-2-5-8 durch einen direkten
Vergleich einer DSC Kurve mit Härtemessungen (siehe Abb. 3.7). Die DSC Kurve
zeigt im Bereich des mit B gekennzeichneten Pfeils (500 – 600°C) einen leichten
Abfall, was auf die Ausscheidung von Sekundärhärtekarbiden zurückzuführen ist. Die
strichliert gekennzeichnete Härtekurve besitzt in diesem Temperaturbereich ein
Maximum.
Abb. 3.7: DSC Kurven des Schnellarbeitsstahles HS10-2-5-8 im gehärteten und angelassenen Zustand (Ausscheidung von: A ... Übergangskarbiden und Zementit, B ... Sekundärhärtekarbide, C ... Erholungs- und Rekristallisationsvorgänge, D-E ... \(\alpha - \gamma \) Umwandlung) [4]

Wie in Abb. 3.6 und Abb. 3.7 ersichtlich ist, kommt es bei Erwärmung des Stahles über das Sekundärhärtemaximum hinaus zu einem Abfall der Härte. Dieser Härteabfall ist auf den fortschreitenden Martensitzerfall, welcher in dem Verlust der Tetragonalität begründet ist, und auf eine Vergröberung der Sekundärhärtekarbide und dem damit verbundenen Verlust ihrer Kohärenz zurückzuführen [47]. Gröbere Karbide besitzen zunehmend größere Abstände zum nächsten Nachbarn und können daher der Versetzungsbewegung einen zunehmend kleineren Widerstand entgegensetzen.

Zusätzlich finden bei zunehmender Temperatur Erholungs- und Rekristallisationsvorgänge statt, die zu einer Abnahme der Versetzungsdichte führen. Die mit zunehmender Temperatur verbesserte Diffusion der Atome und Beweglichkeit der Versetzungen führt zu Erholungsvorgängen, die bereits vor dem Erreichen der Sekundärhärte einen leichten Härteabfall bewirken (vgl. Abb. 3.6). Dazu kommt eine Abnahme der Mischkristallhärting, die durch eine Verringerung der Fremdatom-Konzentration beim Ausscheiden der Sonderkarbide entsteht [48]

3.5.1.2 Warmhärte

Es ist allgemein bekannt, dass die Härte aller Gefügebestandteile (Matrix und Hartphasen) mit zunehmender Temperatur durch mikrostrukturelle Veränderungen abnimmt [49]. Die mikrostrukturellen Veränderungen führen dazu, dass die Hinderniswirkung der Gefügebestandteile (Korngrenzen, Sekundärhärtekarbide) für bewegliche Versetzungen abnimmt. Gleichzeitig nimmt dabei aber die Verformungsfähigkeit des Werkstoffs zu (vgl. Kap. 3.5.1). Aus metallphysikalischer Sicht liegt der Unterschied zwischen Raumtemperatur und „hoher Temperatur“ in den
thermisch aktivierten Erholungs- und Rekristallisationsprozessen, die bei Metallen bei Temperaturen $T > 0.3 \ T_m$ (T_m: Schmelzpunkt in Kelvin) einsetzen [50].

Neben der Erweichung der Metallmatrix nimmt auch die Härte der Karbide in Abhängigkeit vom Karbidtyp mit zunehmender Temperatur ab. Dieser Härteabfall ist auf eine Verringerung der Bindungskräfte und einer Änderung der jeweiligen kovalenten und metallischen Bindungsanteile zurückzuführen [17]. Abb. 3.8 zeigt den Abfall der Mikrohärte (HV0.05) einiger Metallmatrizes und Hartphasen mit zunehmender Temperatur. Aus Abb. 3.8 (b) ist ersichtlich, dass weiche Karbide (M_3C, M_7C_3 und Cr_7C_3) unterhalb von 600°C weniger entfestigen als oberhalb dieser Temperatur.

![Abbildung 3.8: Mikrowarmhärte einiger Metallmatrizes (a) und Hartphasen (b) [17]](image)

Werden Schnellarbeitsstähle bei erhöhter Temperatur (oberhalb des Sekundärhärtemaximums) eingesetzt, führt nicht nur die Abnahme der Härte der Gefügebestandteile sondern auch das bereits in Kap. 3.5.1.1 erwähnte Vergröbern der Sekundärhärtekarbide zu einer Abnahme der Festigkeit und Härte. Unter der Annahme, dass die Härte (HV) proportional zur Streckgrenze ist, kann die Temperatur- und Zeitabhängigkeit der Härte durch folgende Beziehung ausgedrückt werden [51]:

\[
\text{Härte} = \text{Proportionalität konstante} \times \text{Streckgrenze} \times \text{Temperaturfunktion}
\]
\[HV(T,t) = HV_0^*(T) + \frac{K_p^*}{\sqrt[3]{r_{p0}^3} + \alpha(T)t} \] \hspace{1cm} \text{(Glg. 3-3)}

\[K_p^* = 2G(T)bf(f_r,\text{shape}) \] \hspace{1cm} \text{(Glg. 3-4)}

\[
\begin{align*}
HV(T,t) & \quad \text{Härte nach Vickers in Abhängigkeit von Temperatur und Zeit} \\
HV_0^*(T) & \quad \text{Härte nach Vickers in Abhängigkeit von Temperatur zur Zeit Null} \\
r_{p0}^3 & \quad \text{durchschnittlicher Teilchenradius vor der Vergröberung} \\
\alpha(T) & \quad \text{Materialkonstante abhängig von der Mikrostruktur} \\
t & \quad \text{Zeit} \\
G(T) & \quad \text{Schubmodul in Abhängigkeit von Temperatur} \\
b & \quad \text{Burgersvektor} \\
f(f_r,\text{shape}) & \quad \text{Faktor abhängig vom Volumenanteil und der Form der Partikel}
\end{align*}
\]

Den Abfall der Härte mit der Zeit durch isothermes Glühen bei 600°C und 650°C für den Warmarbeitsstahl X 38 CrMoV 5-3 zeigt Abb. 3.9.

Aus Abb. 3.9 wird ersichtlich, dass eine verhältnismäßig geringe Temperaturerhöhung von 600°C auf 650°C zu einer wesentlich beschleunigten Härteabnahme führt.

Zusätzlich zur Vergröberung der Hartphasen können metastabile Sekundärhärtekarbide vom Typ M₂C (vgl. Kap. 3.2.1) bereits bei Einsatztemperaturen, die nur geringfügig über dem Sekundärhärtemaximum liegen, aufgelöst werden. Untersuchungen von Bischof et al. [52] am Warmarbeitsstahl

3.5.2 Druckfestigkeit (Druckbelastbarkeit)

Die Druckfließgrenze (Quetschgrenze) gibt genauso wie die Härte Auskunft über die Formbeständigkeit eines Werkzeugs und ist damit von größter Wichtigkeit bei allen schneidenden, spanenden und umformenden Werkzeugen. Sie kann im Druckversuch bestimmt oder aus der im statischen Biegeversuch leicht messbaren Biegefließgrenze abgeleitet werden [19].

Die Druckfestigkeit der Werkzeugstähle korreliert mit der Härte. Der Zusammenhang zwischen Härte und Biegefließgrenze für Werkzeugstähle, unter der Voraussetzung eines entsprechenden Anlassens, wurde bereits in Abb. 3.5 gezeigt.

3.5.3 Zähigkeit

Werkzeugstähle werden im Einsatz unterschiedlichsten Beanspruchungen mit unterschiedlicher Beanspruchungsgeschwindigkeit und ungleichmäßigen Spannungsverteilungen mit Spannungsspitzen und mehrachigen Spannungszuständen ausgesetzt. Derartige Belastungen können schon bei Nennspannungen, die weit unter der Streckgrenze liegen, zu spröden Brüchen führen [19].

Für Schnellarbeitsstähle ist daher eine ausreichende Zähigkeit sehr wichtig, um durch örtliches plastisches Fließen Spannungsspitzen abbauen zu können und damit ein plötzliches Versagen durch Bruch zu vermeiden.

Im experimentellen Teil dieser Arbeit wird die Zähigkeit des Stahles S290PM über die Bestimmung der Bruchzähigkeit (KIC - Wert) ermittelt. Die Bruchzähigkeit stellt den Widerstand des Materials gegen die Ausbreitung eines bereits vorhandenen Risses dar (instabile Rissausbreitung).

Bereits in Kap. 3.5.1 wurde erwähnt, dass die Zähigkeit mit der Härte korreliert. Tatsächlich nimmt das Fließvermögen (und damit die Zähigkeit) mit zunehmender Härte überproportional schnell ab [19]. Zusammenhänge zwischen Bruchzähigkeit und Härte aus Literaturangaben zeigt Abb. 3.10:
Abb. 3.10: Zusammenhang von Härte und Bruchzähigkeit für Werkzeugstähle (die Punkte stellen gemessene Werte dar) [46]

Das Verhältnis Härte zu Zähigkeit wird signifikant durch den Anteil an Restaustenit und eutektischen Karbiden sowie durch die Anordnung und die Abstände der einzelnen Karbide beeinflusst [55]. Für das Werkstoffdesign der Schnellarbeitstähle folgt daraus, dass zwischen der Forderung nach Formbeständigkeit (erfordert hohe Härte) und der Forderung nach Bruchsicherheit (erfordert hohe Zähigkeit) wegen der Gegenläufigkeit dieser Eigenschaften ein Kompromiss eingegangen werden muss [19].

Abb. 3.11: Spannungs-Durchbiegungs-Kurven von spröden und zähen Werkzeugstählen unterschiedlicher Härte [6]

Abb. 3.11 macht deutlich, wie die Zähigkeit über das Verformungsverhalten beurteilt werden kann, und dass eine höhere Härte zwangsläufig zu sprödem Verhalten der
Stähle führt [18]. Spröde Stähle besitzen ein geringes Fließvermögen und können daher Spannungsspitzen kaum abbauen, wodurch sie bei Nennspannungen unterhalb der Fließgrenze brechen.

3.5.3.1 Rissinitiierung und Rissausbreitung

Die Rissausbreitung in Schnellarbeitsstählen wird entscheidend durch den Gehalt, der Größe und der Verteilung der Karbide sowie den Zähigkeitseigenschaften der martensitischen Matrix beeinflusst [56]. Im Folgenden sollen die Hintergründe dieser Feststellung näher erläutert werden:

Wenn Werkzeuge durch äußere Kräfte belastet werden, treten lokale Spannungen an inneren mikrostrukturellen Bestandteilen (z.B. Karbiden) auf. Können diese Spannungen nicht durch Fließen der Matrix abgebaut werden, beschleunigen sie das Versagen des Werkzeugs durch Bruch [57].

Abb. 3.12: Schematische Darstellung der Bruchzähigkeit als Funktion des Hartphasengehalts (z. B. Boridgehalt) und ihrer Verteilung [17]

Die Auswirkung der Verteilung und der Größe von Hartphasen auf die Biegefestigkeit und Bruchzähigkeit zeigt die Abb. 3.13:

Abb. 3.13: Bruchfestigkeit R_b und Bruchzähigkeit K_{IC} im Biegeversuch als Funktion von Größe und Abstand von Hartphasen (HP) bei konstantem Volumengehalt [17]

Aus Abb. 3.13 wird ersichtlich, dass grobe Hartphasen bereits bei geringer Belastung brechen und damit die Biegefestigkeit absenken. Im rechten Teilbild zeigt sich, dass durch grobe Hartphasen, im Vergleich zu einer feinen Dispersion mit gleichem Volumengehalt, eine höhere Bruchzähigkeit erzielt werden kann. Das ist darauf zurückzuführen, dass im Fall der großen Hartphasen weniger Teilchen in der
Spannungskonzentration vor der Rissspitze brechen oder ablösen und die Rissablenkung zunimmt. Allgemein können Karbide durch **Spaltung oder Ablösung** der Grenzfläche versagen. In beiden Fällen entsteht ein Mikroriss, der bei weiterer Belastung in die Matrix hinein wächst oder sich als Grenzflächenriss ausbreitet wird [17]. Weitere mögliche **Ausgangspunkte für Mikrorisse** sind:

- die Werkstoffoberfläche (Rauhigkeit der Oberfläche bewirkt Kerbwirkung)
- nichtmetallische Einschlüsse (diese haben im Vergleich zu den Karbiden eine schwächere Bindung zur Matrix und lösen sich daher sehr leicht von der Matrix ab)

Fischmeister et al. [58] beschreibt die in Werkzeugstählen bereits bei geringen Lasten auftretende Bildung von unterkritischen Rissen durch **Karbidbruch**. Die schematische Abb. 3.14 zeigt unterkritisches Risswachstum innerhalb von Karbidzeilen, wie sie in schmelzmetallurgisch hergestellten Schnellarbeitsstählen nach dem Umformen oft auftreten. Ein bereits vorhandener Riss wählt den Weg des geringsten Widerstandes, also den Weg der geringsten Energieumsetzung. Der Riss wird sich daher bevorzugt entlang von Karbidzeilen oder Grenzflächen ausbreiten. Abb. 3.14 liegt die Vorstellung zugrunde, dass das unterkritische Wachstum des Risses zum Stillstand kommt wenn der Riss in einen Matrixbereich mündet, wo die Ausbildung einer größeren plastischen Zone möglich ist. Diese Vorstellung von der Rissausbreitung erklärt die Tatsache, dass die Biegebruchfestigkeiten schmelzmetallurgischer Schnellarbeitsstähle längs und quer zur Walzrichtung unterschiedlich hoch ausfallen [58]. Ergebnisse von Grabner [59], wonach die Biegebruchfestigkeit mit zunehmendem Primärkarbidanteil abnimmt, werden damit ebenfalls verständlich.

Für pulvermetallurgisch hergestellte Schnellarbeitsstähle mit einer homogenen Verteilung kleiner Karbide folgt daraus, dass der Abstand der Karbide zum nächsten Nachbarn, also den Bereich der verhältnismäßig zähen Matrix, den ein Riss bis zum nächsten Karbid bzw. Karbidcluster zurückzulegen hat, einen Einfluss auf die Bruchzähigkeit ausübt. Untersuchungen von Poech et al. [60] belegen, dass im gleichen Werkstoff bei identischem Karbidgehalt kleine Karbide mit entsprechend keinem mittleren Abstand im Vergleich zu größeren Karbiden und den damit verbundenen großen Karbidabständen zu einer deutlich geringerer Bruchzähigkeit führen (siehe Abb. 3.13). Insbesondere bei geringem Karbidgehalt hat daher die
Zähigkeit der metallischen Matrix zwischen den spröden Hartphasen einen großen Einfluss auf die Bruchzähigkeit des Verbundes.

Abb. 3.14: Modell der unterkritischen Rissausbreitung in zeitigen Karbidanordnungen schmelzmetallurgischer Schnellarbeitsstähle [58]

Obwohl die hier gezeigten einfachen Modellvorstellungen von der Rissausbreitung das Prinzip der Zähigkeit der Schnellarbeitsstähle theoretisch gut beschreiben können, gibt es in der Literatur kaum Berechnungsmodelle, die eine Beziehung zwischen mikrostrukturellen Bestandteilen und der Bruchzähigkeit (K_{IC}) des Werkstoffs herstellen. Ein Beispiel aus der Literatur ist die von Hahn und Rosenfield [61] für Aluminiumlegierungen angegebene, halbempirische Beziehung zwischen der Bruchzähigkeit und den Kenngrößen des einachsigen Zugversuchs:

$$K_{IC} = \sqrt{\frac{0.05 \cdot \varepsilon \cdot n^2 \cdot E \cdot \sigma_{YS}}{3}} \quad \text{(Glg. 3-5)}$$

ε … Bruchduktilität, bestimmt im Zugversuch aus $\varepsilon = \ln(1/(1-Z))$, wobei Z die Brucheinschnürung im einachsigen Zugversuch darstellt

n … Verfestigungsexponent

E … Elastizitätsmodul

σ_{YS} … Fließspannung

Leskovsêk et al. [57] konnte die Beziehung für die Bruchzähigkeit (Glg. 3-5) unter Berücksichtigung mikrostruktureller Parameter in eine zwar halbempirische, aber seiner Meinung nach für alle Schnellarbeitsstähle näherungsweise gültige Formel für die Bruchzähigkeit verändern:
Gleichung 3-6 zeigt sehr gut, dass die Bruchzähigkeit nicht nur von den Werkstoffeigenschaften Härte (in [HRC]) und E-Modul (in [MPa]) beeinflusst wird, sondern auch von verschiedenen mikrostrukturellen Bestandteilen wie:

- dem Abstand zwischen den eutektischen Karbiden (d_p in [m])
- dem Volumenanteil unaufgelöster eutektischer Karbide (f_{carb})
- dem Volumenanteil an Restaustenit (f_{aust})

Die Austenitkorngröße wurde in der Beziehung für die Berechnung der Bruchzähigkeit (Glg. 3-6) nicht berücksichtigt. Eine Erklärung dafür gibt die Abb. 3.15, in der die Bruchzähigkeit gegen das Verhältnis aus Korngröße zu Größe der plastischen Zone dargestellt ist. Die Abbildung zeigt, dass die Bruchzähigkeit mit zunehmender Austenitkorngröße abnimmt. Wird die plastische Zone vor der Riss spitze aber kleiner als die Korngröße der ehemaligen Austenitkörner, dann geht der Einfluss der Korngröße auf die gemessene Bruchzähigkeit verloren [57].

Abb. 3.15: Zusammenhang zwischen der Bruchzähigkeit und dem Verhältnis aus Korndurchmesser (\overline{L}) und Größe der plastischen Zone (d_p) vor der Riss spitze [62]
Zusammenfassend ergibt sich aus diesen Ausführungen, dass ein Gefüge frei von Inhomogenitäten (Seigerungen, Einschlüsse usw.) sein soll und dass eine homogene Verteilung großer Karbide mit entsprechend großem Karbidabstand, in Kombination mit einer zähen Matrix, die beste Bruchzähigkeit des Verbundes ergeben sollte. Die höchste Bruchfestigkeit kann bei gleichem Volumengehalt an Hartphasen durch eine feine Dispersion der Karbide erreicht werden. In diesem Fall wird auch das Risiko der direkten instabilen Rissausbreitung, bedingt durch die kleineren Mikrorisse in feinen Hartphasen, verringert.
4 Versuchsablauf

Das Ziel dieser Diplomarbeit ist das Feststellen, ob die Pulverfraktion einen Einfluss auf die mechanischen Eigenschaften des Werkstoffs S290PM im vergüteten Zustand ausübt. Dabei steht die Untersuchung der Bruchzähigkeit, Zugfestigkeit und das Härte-Anlassverhalten im Mittelpunkt des Interesses. Es wird versucht, eine Beziehung zwischen dem Gefüge und den Eigenschaften herzustellen, um abgeleitet von den mikroskopischen Bestandteilen, Erklärungen für die makroskopischen Ergebnisse der mechanischen Prüfungen geben zu können.

In den folgenden Abschnitten soll, ausgehend vom Ausgangsmaterial, die Probenvorbereitung und -präparation sowie die Durchführung der Experimente näher erklärt werden.

4.1 Ausgangsmaterial

Als Ausgangsmaterial der Untersuchungen diente das Pulver des Werkstoffs S290PM einer gewöhnlichen Produktionscharge der BÖHLER Edelstahl AG. Dieses durch Verdüsen mit Stickstoff hergestellte Pulver wurde in 6 verschiedene Pulverfraktionen ausgesiebt.

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Kennzeichnung</th>
<th>Teilchengrößenklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 290PM</td>
<td>< 56 µm</td>
<td>0 - 56 µm</td>
</tr>
<tr>
<td>S 290PM</td>
<td>> 56 µm</td>
<td>56.1 - 75 µm</td>
</tr>
<tr>
<td>S 290PM</td>
<td>> 75 µm</td>
<td>75.1 - 125 µm</td>
</tr>
<tr>
<td>S 290PM</td>
<td>> 125 µm</td>
<td>125.1 - 212 µm</td>
</tr>
<tr>
<td>S 290PM</td>
<td>> 212 µm</td>
<td>212.1 - 355 µm</td>
</tr>
<tr>
<td>S 290PM</td>
<td>> 355 µm</td>
<td>355.1 - 500 µm</td>
</tr>
<tr>
<td>S 290PM</td>
<td>S290 (Standard)</td>
<td>0 - 500 µm</td>
</tr>
</tbody>
</table>
Um einen Vergleich mit dem Standardwerkstoff herstellen zu können, wurde darüber hinaus das Standardpulver des Werkstoffs S290PM mit einem mittleren Teilchendurchmesser von ca. 65 μm in die Untersuchung mit einbezogen. Abb. 4.1 zeigt die Mengenanteile der einzelnen Pulverfraktionen nach dem Aussieben des Standardpulvers (Teilchengrößenklasse 0 – 500 μm):

Abb. 4.1: Ergebnisse der Siebanalyse des Standardpulvers (Werkstoff: S290PM, ges. 475.5 kg)

In weiterer Folge wurden die sechs ausgesiebten Pulver sowie das Standardpulver bei einer Temperatur von ca. 1150°C und einem Druck von etwa 1000 bar bei der Firma BÖHLER Edelstahl in Kapfenberg heißisostatisch gepresst. Ein kleiner Teil der durch den HIP - Vorgang kompaktierten Pulver wurde für die Untersuchung des gehipten Zustandes in Form sehr kleiner gehipter Kapseln („Fingerkapseln“, Länge ca. 200 mm) zur Verfügung gestellt (siehe Abb. 4.2).

Abb. 4.2: Fingerkapsel (Kleine Kapsel aus Stahlblech, die mit Pulver gefüllt heißisostatisch gepresst wurde)
Der überwiegende Teil der Pulver wurde gemäß Abb. 2.1, wie in der gewöhnlichen Produktion, durch Hipen und Umformen (z.B. Walzen) weiterverarbeitet. Da vom gehipten Material der Klasse > 355 µm aufgrund der geringen Pulvermenge (siehe Abb. 4.1) für einen Walzvorgang nicht genügend Material zur Verfügung stand, wurde beschlossen einige Teilchengrößenklassen durch Schmieden umzuformen. Damit können zusätzlich verschiedene Umformverfahren hinsichtlich ihres Einflusses auf die mechanischen Eigenschaften verglichen werden. Das geschmiedete und das gewalzte Material wurde von BÖHLER in Form von Stäben (Ø 33mm, Länge ca. 2 – 4 m, Härte ~ 38 HRC) im weichgeglühten Zustand zur Verfügung gestellt. Eine Übersicht des zur Verfügung gestellten Ausgangsmaterials gibt die Tabelle 4.2:

Tabelle 4.2: Stabstähle im weichgeglühten Zustand als Ausgangsmaterial der Probenfertigung (> 355 µm: Ø 22 mm; alle anderen Fraktionen: Ø 33 mm)

<table>
<thead>
<tr>
<th>Werkstoff/Kennzeichnung</th>
<th>Pulverfraktion</th>
<th>Umformverfahren</th>
<th>Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>S290PM / < 56 µm</td>
<td>0 - 56 µm</td>
<td>geschmiedet</td>
<td>weichgeglüht</td>
</tr>
<tr>
<td>S290PM / > 56 µm</td>
<td>56.1 - 75 µm</td>
<td>gewalzt</td>
<td>weichgeglüht</td>
</tr>
<tr>
<td>S290PM / > 75 µm</td>
<td>75.1 - 125 µm</td>
<td>geschmiedet/gewalzt</td>
<td>weichgeglüht</td>
</tr>
<tr>
<td>S290PM / > 125 µm</td>
<td>125.1 - 212 µm</td>
<td>geschmiedet</td>
<td>weichgeglüht</td>
</tr>
<tr>
<td>S290PM / > 212 µm</td>
<td>212.1 - 355 µm</td>
<td>geschmiedet</td>
<td>weichgeglüht</td>
</tr>
<tr>
<td>S290PM / > 355 µm</td>
<td>355.1 - 500 µm</td>
<td>geschmiedet</td>
<td>weichgeglüht</td>
</tr>
<tr>
<td>S290PM / S290</td>
<td>0 - 500 µm</td>
<td>geschmiedet/gewalzt</td>
<td>weichgeglüht</td>
</tr>
</tbody>
</table>

4.2 Pulverpräparation

Für die Untersuchung der Mikrostruktur des Pulvers war ein vorangehendes Einbetten (siehe Kap. 4.4) erforderlich, um die Pulver anschleifen zu können. Allerdings führte dieses Verfahren zunächst nicht zum Erfolg, da das feine Pulver stark zur Agglomeration neigte. Das Problem konnte bei den Pulverfraktionen $\geq 125 \mu m$ mit einem vorangehenden Durchmischen des Pulvers mit Einbettmittel und einem Aufstreuen dieses Gemenges auf den Stempel der Einbettpresse behoben werden. Bei den Pulverfraktionen $< 125 \mu m$ entstanden trotz guter Durchmischung mit Einbettmittel während des Einbettprozesses bei 180°C Pulveragglomerate an der Oberfläche, die eine weitere Präparation der Oberfläche unmöglich machten. Bei diesen Pulvern wurde somit wie folgt verfahren: Aus einem Blatt Papier wurde ein Kreis ausgeschnitten (Durchmesser etwas kleiner als der Schliffdurchmesser) und mittig etwas Klebstoff aufgebracht. Auf diesem wurde eine Schicht Pulver möglichst gleichmäßig verteilt. Dieses Blatt Papier mit dem aufgeklebten Pulver wurde anschließend mit dem Pulver nach oben in die Einbettpresse gelegt und die empfohlene Menge Einbettmittel (30 mL „Polyfast“) nachgeleert. Bei den Schliffen der Pulverfraktionen $< 125 \mu m$ wurde danach das Papier, dass nach dem Einbetten nach oben zeigte mit SiC-Nassschleifpapier (Körnung 500) abgeschliffen. Das nun zum Vorschein kommende Pulver wurde mit 800-er und 1200-er SiC-Nassschleifpapier leicht angeschliffen und danach mit Diamant-Suspension (3 μm und 1 μm) poliert. Mit den Pulverfraktionen, die ohne aufkleben auf Papier eingebettet werden konnten, wurde analog verfahren.

4.3 Gefüge und Phasenanalyse

Die XRD-Analyse hat den Nachteil eines minimal nachweisbaren Phasengehalts von etwa zwei Volumsprozent [63]. Dafür birgt die energiedispersive Röntgenanalyse die Gefahr, bei sehr kleinen Karbiden die umliegende Matrix mit anzuregen und so das Ergebnis zu verfälschen.

4.4 Mikroskopie

Für lichtmikroskopische Untersuchungen stand ein Mikroskop der Marke Reichert-Jung, Typ Polyvar MET mit direkter Verbindung zur Auswertesoftware AnalySIS 3.0 zur Verfügung. Die Gefügebilder wurden auf einem Rasterelektronenmikroskop der Marke Zeiss Typ EVO 50 aufgenommen.

Alle Proben für die REM Untersuchungen wurden mit einer Warmeinbettpresse der Firma Struers (LaboPress-3) in eine elektrisch leitende Einbettmasse (Polyfast) entsprechend der Empfehlung des Herstellers bei 180°C warm eingebettet. Mit Ausnahme der Korngrößenbestimmung wurden alle Gefügebilder an nicht geätzten Schliffen aufgenommen.

Es ist zu beachten, dass durch das Anschleifen der Pulverteilchen im Schliffbild nur Anschnittflächen sichtbar sind, die keine Flächen größter Ausdehnung darstellen.

Für die mit der Software AnalySIS 3.0 ermittelte Karbidgröße wird jeweils der mittlere Durchmesser eines Objekts angegeben. Mehrere Karbide des gleichen Typs, die im Gefügebild direkt aneinander liegen, oder nur einige Bildpunkte voneinander getrennt sind, können nur als ein Objekt detektiert werden. Das Objekt stellt dann einen Karbidcluster aus gleichartigen Karbiden dar.

4.5 Probenherstellung und Wärmebehandlung

4.5.1 Härtedummys

Für die Bestimmung der Härte - Anlasskurven wurden vom gewalzten bzw. geschmiedeten Stabstahl mit Durchmesser 33 und 22 mm (Zustand: weichgeglüht), Zylinder der Höhe 12 mm abgeschnitten. Um die Wärmeeinbringung so gering wie möglich zu halten, wurden die Schnitte mit einer wassergekühlten Bandsäge durchgeführt. Die Probennahme erfolgte nicht im Anfangs- oder Endbereich der geschmiedeten Stäbe, um eventuelle Einflüsse des Anstichs und Abstichs zu vermeiden. Danach wurden die Zylinder planparallel geschliffen und geviertelt. Die Kennzeichnung der Proben erfolgte durch Stempeln, wobei folgendes Buchstaben-Zahlen-Schema verwendet wurde: Der 1. Buchstabe kennzeichnet die Pulverfraktion, der 2. die Härtetemperatur und die nachfolgende Ziffer die entsprechende
Anlasstemperatur (siehe Tabelle 4.3). Proben der gewalzten Stäbe enthalten zusätzlich (als 3. Buchstaben) ein W.

Tabelle 4.3: Kennzeichnung der Proben für die Bestimmung der Härte - Anlasskurven
(Anmerkung: B1…Buchstabe 1, B2…Buchstabe 2, B3…Buchstabe 3)

<table>
<thead>
<tr>
<th>B1</th>
<th>Bedeutung</th>
<th>B2</th>
<th>Bedeutung</th>
<th>B3</th>
<th>Bedeutung</th>
<th>Ziffer</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 56</td>
<td>A</td>
<td>1130</td>
<td>fehlt</td>
<td>geschmiedet</td>
<td>1</td>
<td>480</td>
</tr>
<tr>
<td>B</td>
<td>> 56</td>
<td>B</td>
<td>1190</td>
<td>W</td>
<td>gewalzt</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>C</td>
<td>> 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>520</td>
</tr>
<tr>
<td>D</td>
<td>> 125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>540</td>
</tr>
<tr>
<td>E</td>
<td>> 212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>560</td>
</tr>
<tr>
<td>F</td>
<td>> 355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>580</td>
</tr>
<tr>
<td>G</td>
<td>S290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>600</td>
</tr>
<tr>
<td>H</td>
<td>S290 ung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Wärmebehandlung der geviertelten Proben (Härtedummys) erfolgte nach dem in Kap. 3.4 gezeigten Prinzip: Die Proben wurden im Vakuumofen des Material Center Leoben Forschung GmbH (MCL) austenitisiert, abgeschreckt und anschließend 3-mal für 2 Stunden bei verschiedenen Temperaturen (unter Luftatmosphäre) angelassen. Das Anlassen wurde am Department Metallkunde und Werkstoffprüfung in Laboröfen des Typs Nabertherm N11/HR durchgeführt.

Die **Austenitisierungstemperatur** betrug für die Hälfte der Proben 1130°C (Haltezeit ca. 8 min) und für die andere Hälfte 1190°C (Haltezeit ca. 3 min). Der gesamte Härteprozess wurde exakt nach den empfohlenen Vorgaben der Firma BÖHLER für den Werkstoff S290PM durchgeführt.

Die nachfolgenden Abbildungen zeigen die realen Temperatur - Zeit Verläufe der Proben beim Härtevorgang:
Das Abschrecken nach dem Halten auf Härtemperatur erfolgte mit Stickstoff. Dadurch konnte eine vergleichbare Abkühlgeschwindigkeit wie bei Ölbadabschreckung erreicht werden (Abkühlgeschwindigkeit $\lambda = 0.2 - 0.3$). Beim Anlassen wurde die Anlasstemperatur zwischen 480°C und 600°C in 20°C Schritten variiert. Wie für Schnellarbeitsstähle üblich bestand jeder einzelne Anlassvorgang aus 3 mal 2 Stunden Anlassen bei gleicher Temperatur. Zwischen den einzelnen Anlasszyklen wurden die Proben durch Luftabkühlung auf Raumtemperatur abgekühlt.

Abschließend wurde die, trotz der Verwendung von härtefolie, vorhandene Oxidschicht an der Oberfläche durch Schleifen entfernt, um die Härtemessung nicht durch diese an Kohlenstoff verarmte Zone zu beeinflussen.

Das Ziel der Bestimmung der Härte - Anlasskurven bestand auch darin die Wärmebehandlung der Zug- und K$_C$ - Proben festzulegen.

4.6 Zugversuche

4.6.1 Zugproben

Abb. 4.4: Kugelkopfprobe für die Zugprüfung

Die Kugelkopfproben wurden direkt aus dem Stabstahl im weichgeglühten Zustand herausgedreht. Die verwendeten Proben haben in der Mitte einen Durchmesser von 6 mm und eine Messlänge von 40 mm.

Nach der Fertigung der Proben auf Vormaß und dem Härten (Austenitisierungstemperatur 1190°C) folgte die Fertigung auf Endabmessung und abschließend eine Anlassbehandlung gemäß Kap. 3.4.3.

Bei den Zugproben der Charge > 355 μm traten bereits beim Härteprozess Risse im Kopfbereich auf. Eine Farbeindringprüfung zeigte, dass die Härterisse an Stellen ausgingen, wo die Stahlkapsel durch die Bearbeitung nicht entfernt wurde. Im Fall der Klasse > 355 μm konnte die Stahlkapsel aufgrund des kleineren Durchmessers des Ausgangsmaterials (Ø 22mm) nicht entfernt werden. Der Grund dafür ist, dass für die Zugproben ein Kopfdurchmesser von 22 mm erforderlich ist. Die Zugproben der Pulverklasse > 355 μm wurden daher aufgrund ihrer Härterisse verworfen. Alle Zugproben welche aus dem Halbleug mit größerem Durchmesser (Ø 33 mm) gefertigt wurden, waren optisch rissfrei.

4.7 K_{IC} – Prüfung

Die Bestimmung der Bruchzähigkeit für den ebenen Dehnungszustand (plain-strain fracture toughness), ausgedrückt als K_{IC} - Wert, erfolgte in Anlehnung an die Norm ASTM E399-97. Ausnahmen davon stellen die Ermüdungsrisseinbringung und Probengeometrie dar (siehe dazu Kap. 4.7.1). Nach der Risseinbringung erfolgte das Brechen der Probe unter 3-Punktbiegung mit gleichzeitiger Messung der Kerbaufweitung durch einen Metallclip. Mit dem Metallclip ist nämlich die Messtechnik verbunden, die es erlaubt, die Aufweitung der Kerbe am Computer auszuwerten. Aus der Kraft - Verformungskurve und der Risslänge wurde die Bruchzähigkeit des Werkstoffs als K_{IC} - Wert bestimmt.

Für die Bestimmung der mittleren Gesamtrisslänge wurden die Risslängen an 5 Positionen ausgemessen. Die Gültigkeitskriterien für die Probenbreite, Risslänge und das Kriterium $F_{max} / F_Q < 1.1$ wurden überprüft und von allen Proben erfüllt. Für die Streckgrenze $R_{p0.2}$ wurde dazu ein Wert von 2800 N/mm² aus Voruntersuchungen, die von der Firma BÖHLER durchgeführt wurden, angenommen. Das war notwendig,
da im Zugversuch alle Proben vor dem Erreichen der tatsächlichen Festigkeit gebrochen sind und eine Angabe der Streckgrenze aufgrund der fehlenden Plastifizierung nicht möglich war (siehe Kap. 5.6).

4.7.1 K_{IC} - Proben

Bei den Proben für die Bestimmung der Bruchzähigkeit handelt es sich um einseitig gekerbte 3-Punktbiegeproben mit den Abmessungen 6x12x70 mm3 (B x W x L). Die Proben wurden aus dem weichgeglühten Halbzeug gefertigt. Pro Pulverfraktion standen jeweils 5 K_{IC} - Proben zur Verfügung.

Die Risseinbringung erfolgte durch:

1. Einbringen der Vorkerbe durch Erodieren
2. Einbringen eines Ermüdungsanrisses durch Druckanschwingen

Das Druckanschwingen erfolgte auf einer elektrodynamischen Prüfmaschine der Firma (RUMUL) am MCL. Beim Anschwingen hat sich eine Spannungs-intensitätsschwingbreite von 100 MPa als zielführend für die Rissentstehung erwiesen.

Die Wärmebehandlung der K_{IC} - Proben unterscheidet sich nicht von jener der Zugproben: die Austenitisierungstemperatur beträgt 1190°C (Haltezeit ca. 3 min) mit anschließendem Abschrecken mit Stickstoff ($\lambda = 0.2 - 0.3$). Der abschließende Anlassprozess besteht aus dreimaligem Anlassen bei 560 °C, zur Erreichung einer Zielhärte von 69 HRC. Die Zielhärte wurde innerhalb unvermeidbarer Schwankungen durch die Temperaturunterschiede der Öfen von allen Proben erreicht. Um die Anzahl der Proben überschaubar zu halten wurde genau so wie bei den Zugproben (vgl. 4.6.1) auf eine zweite Härtemessung (1130°C) verzichtet.

4.8 Härtemessung

Sämtliche Härtemessungen wurden auf einem Härtemessgerät der Marke EMCO Test, Typ M4R-075, mit der Methode nach Rockwell C und einer Prüflast von 150 kg durchgeführt.

Alle Härtemessungswerte wurden als Mittelwert aus mindestens drei Eindrücken bestimmt. Der Prüfraumbedingt wird die Makrohärte, eine Mischhärte aus Matrix und Hartphasen, gemessen. Für die Bestimmung der Hart - Anlasskurven wurden Mittelwerte aus 4 bis 5 Eindrücken angegeben. Eine wichtige Vorraussetzung für eine gültige Härtemessung ist, dass das Gebiet der plastischen Verformung repräsentativ für die
Probe ist. Aufgrund der sehr homogenen Verteilung der Karbide in
pulvermetallurgischen Schnellarbeitsstählen kann diese Bedingung als weitgehend
erfüllt betrachtet werden.

4.9 Computertomographie

Das Prinzip der Computertomographie basiert auf der Durchstrahlung von
Prüfobjekten mit Röntgenstrahlung (= kurzwellige elektromagnetische Strahlung). Die
Röntgenstrahlen, die durch das Untersuchungsobjekt gelangen werden von
mehreren Detektoren gleichzeitig aufgezeichnet. Durch eine Registrierung der
Intensitätsverteilung nach der Durchstrahlung wird eine schattenrissartige Abbildung
der Dicken- und Dichteverteilung erreicht. Viele aus verschiedenen Richtungen
aufgenommene Röntgenaufnahmen eines Objekts können dann per Computer zu
einem dreidimensionalen Objekt zusammengesetzt werden. Dadurch kann die
Computertomographie zum Nachweis von Werkstoffinhomogenitäten abweichender
Dichte (z.B. Poren oder Lunker) oder abweichender Zusammensetzung (z.B.
Fremdeinschlüsse) angewandt werden [65].

Die Computertomographie wurde am österreichischen Gießereiinstitut (ÖGI) in
Leoben durchgeführt. Die Messung erfolgte auf einem Flächendetektor (siehe
Abb. 4.5) der Marke Phoenix X-ray, Typ v tome x c 240D, mit einer 240 kV
Mikrofocus-Röntgenröhre. Im Allgemeinen wird bei diesem Verfahren am ÖGI eine
Detailerkennbarkeit von > 20 µm erreicht [66].
Als Untersuchungsobjekte für die Computertomographie dienten das Pulver des Werkstoffs S290PM (Standardpulver 0 – 500 μm), welches in einen Styroporzylinder gefüllt wurde, und eine gehipte Probe mit einem Volumen von ca. 5 mm³ (siehe Abb. 4.5). Zusätzlich zu zweidimensionalen Aufnahmen in verschiedenen Ebenen wurden sowohl vom Standardpulver als auch vom gehipten Zustand einige Schichtfilme aufgezeichnet. Im Fall des Standardpulvers wurde dabei eine Pulversäule von 6.6 mm Höhe in verschiedenen Ebenen (Axial, Saggital, Frontal) durchlaufen.

Die Untersuchung wurde mit dem Ziel durchgeführt, quantitative Aussagen über die Porosität im Pulver zu gewinnen und den gehipten Stahl auf Inhomogenitäten (Poren, nichtmetallische Einschlüsse usw.) zu untersuchen.
5 Ergebnisse

5.1 Verdüstes Pulver

Das Prinzip der Gas-Verdüsung besteht darin, dass eine Schmelze mit der dem Endprodukt entsprechenden chemischen Zusammensetzung von strömenden komprimierten Gasen in Tröpfchen zerteilt wird, die mit oder ohne zusätzliche Kühlmittel im Zerteilungsmedium rasch erstarren [28].

5.1.1 Morphologie

Abbildungen 5.1 und 5.2 zeigen eine stereomikroskopische und rasterelektronenmikroskopische Aufnahme des ausgesiebten Pulvers des Werkstoffs S290PM. Details zur Probenvorbereitung und Pulverkennzeichnung finden sich in Kap. 4.1 und 4.2.

Abb. 5.1: Verdüstes Pulver, Werkstoff S290PM (links: Pulverfraktion > 212 μm; rechts: Pulverfraktion > 355 μm)

Aus Abb. 5.1 und 5.2 ist ersichtlich, dass das durch Verdüsen mit Gas (Stickstoff) hergestellte Pulver aus einzelnen überwiegend kugeligen Pulverteilchen besteht. Die Energie für die blitzartige Kugelbildung vor der Erstarrung stammt aus dem Energiegewinn durch Minimierung der Oberflächenenergie.
Es ist in Abb. 5.1 außerdem zu erkennen, dass die Oberfläche der Pulverkugeln nicht glatt ist. Wie aus den REM-Bildern (Abb. 5.2) besser ersichtlich ist, handelt es sich bei der vermeintlich rauen Oberfläche um kleinere Pulverteilchen, die an der Oberfläche größerer Pulverkugeln angehaftet sind. Diese so genannten “Satelliten”, die bei Verdüngungsprozessen häufig beobachtet werden, entstehen durch Zusammenstöße zwischen Teilchen während der Flugphase in der Erstarrungszone der Verdüngskammer [30,33]. Trifft ein bereits erstarrtes Pulverteilchen auf ein teilweise schmelzflüssiges Teilchen, entsteht ein Satellit. Die genauen Ursachen und Prozessbedingungen die zur Satellitenbildung führen sind aber noch weitgehend unklar [67].
Abb. 5.2: REM - Bilder der ausgesiebten Pulverfraktionen: a) < 56 μm, b) > 56 μm, c) > 75 μm, d) > 125 μm, e) > 212 μm, f) > 355 μm

Die REM - Bilder (Abb. 5.2) bestätigen die überwiegend kugelige Form der Pulverteilchen. Darüber hinaus können folgende Aussagen getroffen werden:
- Das feinste Pulver (< 56 µm) weist kaum Satelliten auf, denn es gibt keine Teilchen die noch schneller erstarren
- Einige Teilchen wurden durch Zusammenstöße stark deformiert
- Im Hintergrund der einzelnen Aufnahmen sind teilweise viele Teilchen sichtbar, deren Abmessungen weit unter dem der angegebenen Teilchengrößenklasse liegen

Um die Größenverhältnisse zu klären, wurden aus Abb. 5.1 und 5.2 sowie weiteren hier nicht gezeigten Aufnahmen die Teilchendurchmesser mit der Software AnalySIS bestimmt. Von jeder Pulverfraktion wurden mindestens 50 Teilchen vermessen und ein Mittelwert gebildet. Die Mittelwerte der Teilchendurchmesser der jeweiligen Pulverfraktion zeigt Tabelle 5.1:

Tabelle 5.1: Ergebnisse der Teilchendurchmesserbestimmung mit AnalySIS (Die Werte in Klammer sind Messwerte aus stereomikroskopischen Bildern)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 56</td>
<td>0 - 56</td>
<td>15 (-)</td>
<td>11 (-)</td>
<td>100 (-)</td>
</tr>
<tr>
<td>2</td>
<td>> 56</td>
<td>56.1 - 75</td>
<td>38 (-)</td>
<td>30 (-)</td>
<td>13 (-)</td>
</tr>
<tr>
<td>3</td>
<td>> 75</td>
<td>75.1 - 125</td>
<td>52 (-)</td>
<td>43 (-)</td>
<td>20 (-)</td>
</tr>
<tr>
<td>4</td>
<td>> 125</td>
<td>125.1 - 212</td>
<td>178 (-)</td>
<td>25 (-)</td>
<td>94 (-)</td>
</tr>
<tr>
<td>5</td>
<td>> 212</td>
<td>212.1 - 355</td>
<td>293 (270)</td>
<td>27 (43)</td>
<td>100 (90)</td>
</tr>
<tr>
<td>6</td>
<td>> 355</td>
<td>355.1 - 500</td>
<td>409 (426)</td>
<td>40 (40)</td>
<td>93 (91)</td>
</tr>
</tbody>
</table>

Wie Tabelle 5.1 zeigt, liegen die Teilchendurchmesser der Proben 2 und 3 (> 56 µm und > 75 µm) außerhalb der durch die Maschenweite der Siebe vorgegebenen Teilchengrößenklassen. Bei Betrachtung der Mittelwerte der Teilchendurchmesser von Probe 2 und 3 wird klar, dass der überwiegende Teil der Pulverteilchen dieser Teilchengrößenklassen wesentlich kleiner als angegeben sein muss. So lagen bei Probe 3 nur 20 % der vermessenen Teilchen innerhalb der angegebenen Teilchengrößenklasse (75.1 – 125 µm), bei Probe 2 waren es nur 13 %. Bei den anderen Pulverproben (1, 4, 5, 6) lagen die Teilchendurchmesser zu einem überwiegenden Teil innerhalb des angegebenen Bereichs (93 – 100 %).

Sehr kleine Teilchen, bei denen es sich offensichtlich um abgebrochene Satelliten handelt, welche auch bei den größeren Pulverteilchen im Hintergrund sichtbar sind, wurden nicht in die Auswertung miteinbezogen. Überlegungen, wonach es sich auch
bei den Proben 2 und 3 bei den zu kleinen Teilchen um abgebrochene Satelliten handeln könnte, sind nicht haltbar. Dazu ist der Anteil an kleinen Teilchen und ihre Abmessungen im Vergleich zu den Pulverteilchen richtiger Größe zu hoch. Überraschenderweise wurde der angegebene Teilchengrößenbereich bei Probe 2 und 3 nach unten und oben überschritten, was auf einen fehlerhaften Aussiebprozess schließen lässt. Dieses Ergebnis muss daher in weiterer Folge bei der Interpretation des Einflusses der Pulverfraktionen auf die mechanischen Eigenschaften berücksichtigt werden.

5.1.2 Pulveroberfläche
Wie bereits in Kap. 3.2.2 im Literaturteil dargestellt wurde, führt eine Oxidschichtbelegung der Pulverteilchen unweigerlich zu Fehlstellen im Endprodukt. Es ist daher wichtig die Ursachen für die Entstehung der Oxidschichten zu kennen, um Fehler im Produktionsprozess zu vermeiden. Mögliche Ursachen für erhöhte Sauerstoffgehalte in gasverdüsten Pulvern, die zur Oxidschichtbildung führen, sind allgemein [26]:

- Sauerstoff in der Schmelze (führt zu endogenen Einschlüssen)
- Sauerstoff in der Verdünnungskammer vor dem Beginn des Verdünsungsprozesses (führt zu Oxidschichten an der Pulverteilchenoberfläche)
- Sauerstoff im Verdünnungsgas
- Kontamination des Pulvers mit Sauerstoff bei der Weiterverarbeitung des Pulvers nach dem Verdüsen

Eine Untersuchung der Pulverteilchenoberfläche auf Oxidschichtbelegung ist aufgrund der geringen Dicken derartiger Schichten äußerst schwierig. Auch wenn Untersuchungen hinsichtlich der chemischen Zusammensetzung der Oberflächenenschicht mittels Röntgenphotoelektronenspektroskopie (XPS) oder Auger - Elektronenspektroskopie (AES) grundsätzlich möglich sind, wurden diese Untersuchungen im Rahmen dieser Arbeit nicht durchgeführt.

Dafür wurde der Versuch unternommen, Sauerstoff an der Oberfläche der ausgesiebten Pulverteilchen mittels einer EDX - Analyse im Rasterelektronenmikroskop zu detektieren, um Aussagen über eine mögliche Oxidschichtbelegung zu gewinnen. Da kein Sauerstoff festgestellt wurde, konnte kein Beweis für eine Oxidschichtbelegung gefunden werden.
Es muss aber trotzdem davon ausgegangen werden, dass die große spezifische Oberfläche der hier untersuchten Pulverteilchen, in Kontakt mit dem Atmosphärensauerstoff reagiert, und dass diese Reaktion zu einer zumindest sehr dünnen Oxidschicht an der Oberfläche führt.
5.1.3 Gefüge

Um die Mikrostruktur der Pulverteilchen charakterisieren zu können wurden die verschiedenen Pulverfraktionen entsprechend Kap. 4.2 eingebettet und angeschliffen. Abb. 5.3 zeigt lichtmikroskopische Aufnahmen der auf diese Weise erhaltenen Pulverteilchen.

Abb. 5.3: Lichtmikroskopische Aufnahmen der Pulverschliffe: a) < 56 μm, b) > 56 μm, c) > 75 μm, d) > 125 μm, e) > 212 μm, f) > 355 μm

Eine genaue Betrachtung der Poren und ihrer Oberfläche mit dem Rasterelektronenmikroskop zeigt, dass die Poren, wie anhand der kreisrunden dunklen Querschnitte der lichtmikroskopischen Aufnahmen zu vermuten war, fast perfekt kugelförmig sind. Das beweist Abb. 5.4, die eine Pore im Pulver der Fraktion > 355 μm zeigt. Abb. 5.5 ist eine Detailaufnahme der frei erstarrten Oberfläche innerhalb dieser Pore.

Abb. 5.4: Pore im Pulver des S290PM (Pulverklasse > 355 μm). Eutektisches Karbidnetzwerk an der Oberfläche des Schliffs und frei erstarrte Oberfläche im Porengrund (Aufnahmemodus: Rückstreuelektronen)
Abb. 5.5: Detailaufnahme der frei erstarrten Oberfläche der Pore aus Abb. 5.4. Die Oberfläche zeigt Dendriten und facettiert erstarrte Bereiche, in denen das Karbidnetzwerk ersichtlich ist (Aufnahmemodus: Rückstreuelektronen)

Bei genauem Betrachten von Abb. 5.5 fällt auf, dass sich die frei erstarrte Oberfläche aus würzelförmigen und tannenbaumförmigen Kristallen zusammensetzt, was auf eine facettierte und dendritische Erstarrung schließen lässt. Die Dendriten sind von würzelförmigen Kristallen umgeben, in denen ein Netzwerk aus eutektischen Karbiden (MC) sichtbar ist. Mit EDX wurde festgestellt, dass die würzelförmigen Kristalle die Zusammensetzung der Matrix aufweisen.

Im Gegensatz dazu zeigt Abb. 5.6 eine blockige Morphologie von frei erstarrten MC Karbiden in der Pore eines anderen Pulverteilchens > 355 μm. Die vanadiumreichen MC Karbide werden erst am Ende der Erstarrung im Zuge der eutektischen Reaktion gebildet [69].
Abb. 5.6: Erstarrungsmorphologie der MC Karbide in der frei erstarrten Oberfläche einer Pulverpore (Aufnahmemodus: Rückstreuelektronen)

Die Diskussion möglicher Ursachen und Auswirkungen der Porosität im Pulver, erfolgt im Diskussionsteil (Kapitel 6).

5.1.3.1 Erstarrungsstruktur der Pulverteilchen
Um die Erstarrungsstruktur der Pulverteilchen beurteilen zu können, wurden REM-Untersuchungen an einigen angeschliffenen und polierten Pulverteilchen unterschiedlicher Größe durchgeführt:
Abb. 5.7: Überblickaufnahme: Das Gefüge zeigt das eutekische Karbidnetzwerk eines gasverdüsten Pulverteilchens des Werkstoffs S290PM (Klasse > 355 µm)

In Abb. 5.7 ist anhand einer rasterelektronenmikroskopischen Aufnahme das eutektische Karbidnetzwerk eines Pulverteilchens (Pulverklasse > 355 µm) zu erkennen. Der linke oberen Bereich der Aufnahme zeigt ein Satellitenteilchen, welches vollständig mit der großen Pulverkugel verbunden ist. Die Mikrostruktur (Karbidnetzwerk) einzelner Pulverteilchen variiert sehr stark in Abhängigkeit der Teilchengröße, wie in Abb. 5.8 zu erkennen ist.
Abb. 5.8: Detailaufnahmen von Pulverteilchen unterschiedlicher Größe (Teilchengrößenklasse: a) > 125 \mu m b) > 355 \mu m). In den REM Aufnahmen ist die netzartige Anordnung der Karbide in der Erstarrungsstruktur zu erkennen. Exemplarisch wurde je ein Sekundärärendritenarmabstand (DAS) in Aufnahme a) und b) eingezeichnet.

Während im oberen Teilbild (Abb. 5.8 a)) eine sehr feine, gefächerte Mikrostruktur vorliegt, erscheint die Mikrostruktur des größeren Pulverteilchens (Abb. 5.8 b)) deutlich gröber. Zusätzlich treten im Gefüge des größeren Pulverteilchens blockige Strukturen auf. Die Ursache für die genannten Unterschiede in der Mikrostruktur sind auf den Einfluss Abkühlgeschwindigkeit auf das Gefüge der Pulverteilchen zurückzuführen. Aufgrund der höheren Erstarrungsgeschwindigkeit weisen kleinere Pulverpartikel eine wesentlich feinere Erstarrungsstruktur im Vergleich zu den größeren Pulverteilchen auf. Die Feinung des Gefüges ist auf die bei hoher
Erstarrungsgeschwindigkeit auftretende Verkürzung der Diffusionswege zurückzuführen [70]. Die Abstände der Sekundärndrittenarme im Gefüge der kleineren Pulverteilchen sind daher im Vergleich zu den größeren Teilchen geringer. Die Identifikation der Karbide in den Gefügebildern der Pulverteilchen (Abb. 5.7 bis Abb. 5.9) ist aufgrund ihrer Feinheit sehr schwierig.

Abb. 5.9: Erstarrungsstruktur eines Pulverteilchens > 355 μm im Rasterelektronenmikroskop
[1 = metallische Matrix, 2 – 3 = Karbide unterschiedlicher chemischer Zusammensetzung (siehe Text), 4 = nichtmetallischer Einschluss]

Mit Hilfe einer EDX - Analyse eines angeschliffenen Pulverteilchens (Abb. 5.9) wurde dennoch der Versuch einer Karbidbestimmung unternommen. Die Pfeile kennzeichnen dabei die Stellen, an denen entsprechende EDX - Spektren aufgenommen wurden. Die mit 1 gekennzeichnete Messstelle konnte als metallische Matrix bestimmt werden. Messpunkt 4 stellt einen nichtmetallischen Einschluss dar. Die Spektren der Messpunkte 2 und 3 zeigt die Abb. 5.10:
Abb. 5.10: EDX Spektren der Messpunkte 2 (a) und 3 (b) aus Abb. 5.9

Das EDX Spektrum in Abb. 5.10 a) zeigt, dass es sich bei dem blockigen Karbid (Messpunkt 2 der Abb. 5.9), dessen Kontrast sich nur geringfügig von der metallischen Matrix unterscheidet, um ein eisenarmes, hoch Wolfram- und Vanadinhaltiges Karbid handelt. Aufgrund der chemischen Zusammensetzung kann der Karbidentalyp mit hoher Wahrscheinlichkeit als MC - Typ betrachtet werden.

Das EDX Spektrum Abb. 5.10 b) zeigt, dass es sich bei dem in den REM - Bildern (Abb. 5.7 - Abb. 5.9) im Vergleich zur Matrix heller erscheinenden Karbidnetzwerk um ein hoch Wolframhaltiges Karbid handelt. Der Vanadingehalt ist aber gegenüber den dunkleren Karbidbereichen deutlich abgesenkt. Der Eisen - Peak ist durch die Mitanregung der Matrix etwas zu hoch. Diese Aussage stützt sich auf mehrere EDX Spektren von Bereichen mit vergleichbarem Phasenkontrast in denen sich die Höhe des Fe - Peaks stark, die W, Mo, und V Peaks jedoch nicht wesentlich verändert haben. Unter Berücksichtigung der chemischen Zusammensetzung und der hohen Erstarrungsgeschwindigkeit (siehe Kap. 3.2.1) ist anzunehmen, dass es sich um Karbide des Typs M₂C handelt. Für das Fehlen des M₆C Karbids spricht auch der
hohe Kohlenstoffgehalt des S290PM, denn mit zunehmendem Kohlenstoffgehalt werden M$_2$C Karbide auf Kosten der M$_6$C Karbide stabilisiert [14].

Aus Abb. 5.9 könnte der Schluss gezogen werden, dass das Eutektikum in das blockige MC-Karbid umgewandelt wird.

Um weitere mögliche Phasen in der Erstarrungsstruktur festzustellen und die obige Identifikation der Karbide zu bestätigen, wurde ein XRD-Scan des Standardpulvers mit Kupfer- und Chromstrahlung aufgenommen (siehe Abb. 5.11).

![XRD-Scan des Pulvers S290 PM (Standard); Strahlung: (a) CuKα; (b) CrKα](image-url)

Das gleiche Ergebnis für den Werkstoff S290PM wurde auch schon von Wießner [71] publiziert. Die größere Wellenlänge der Cr - Strahlung im Vergleich zur Cu - Strahlung führt zu einem größeren Winkelbereich 2Θ und damit zu einer besseren Aufspaltung der Peaks. Mögliche M₂C oder M₆C Karbide konnten beim XRD Scan mit Cr - Strahlung, trotz der etwas besseren Aufspaltung, nicht nachgewiesen werden. Der Grund dafür ist das starke Rauschen im Chrom - Scan, das dadurch entstanden ist, dass der Probenteller in diesem Fall aus anlagentechnischen Gründen nicht rotiert werden konnte. Dadurch war es nicht möglich, den kleinen Peaks einen eindeutigen Winkel zuzuordnen, was die Auswertung zusätzlich erschwert hat.

Aufgrund der Ergebnisse der XRD - Analyse wäre es grundsätzlich auch denkbar, dass es sich bei dem hell erscheinenden Karbidtyp (Messpunkt 3 in Abb. 5.9) ebenfalls um MC, jedoch mit abgewandelter chemischer Zusammensetzung, handelt. Wie der EDX - Scan (Abb. 5.10) zeigt, unterscheiden sich helle und dunkle Karbidbereiche nur im Vanadium-Gehalt. Durch die hohe Abkühlrate und den damit verbundenen Ungleichgewichtsbedingungen könnte es zu einer teilweisen Übersättigung des MC Karbids mit schweren Legierungselementen gekommen sein, was dann zu dem Unterschied im Phasenkontrast in den REM - Aufnahmen geführt hat. Eine abgesicherte Identifikation dieses Karbidtyps kann an dieser Stelle demnach nicht erbracht werden.

5.1.3.2 Abschätzung der Erstarrungsgeschwindigkeit

Eine Möglichkeit die Abkühlrate verdüster Stähle abzuschätzen, liegt in der Vermessung des Sekundärdendritenarmabstands der Erstarrungsstruktur. Zwischen dem sekundären Dendritenarmabstand (DAS) und der Kühlrate besteht folgender Zusammenhang [30]:
Nach dem Modell von Morris für Schnellarbeitsstähle (Typ M2) folgt durch Einsetzen der Werte für die Konstanten A und B [72]:

\[DAS = A \cdot K^{-0.34} \] (Glg. 5-2)

Die Tabelle 5.2 fasst die errechneten Abkühlgeschwindigkeiten, die durch Verwendung der Glg. 5-2 erhalten wurden, zusammen. Die Sekundärendritenarmabstände wurden aus verschiedenen Gefügebildern (siehe z.B. Abb. 5.8) abgeschätzt.

<table>
<thead>
<tr>
<th>Pulverteilchendurchmesser</th>
<th>Sekundärendritenarmabstand</th>
<th>Abkühlgeschwindigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 355 (\mu)m</td>
<td>3.2 (\mu)m</td>
<td>5300 K/s</td>
</tr>
<tr>
<td>> 125 (\mu)m</td>
<td>1.4 (\mu)m</td>
<td>60000 K/s</td>
</tr>
<tr>
<td>> 75 (\mu)m</td>
<td>1.1 (\mu)m</td>
<td>122000 K/s</td>
</tr>
<tr>
<td>< 56 (\mu)m</td>
<td>1.0 (\mu)m</td>
<td>162000 K/s</td>
</tr>
</tbody>
</table>

Die Tabelle 5.2 verdeutlicht die extrem rasche Erstarrungsgeschwindigkeit in der Gasverdüsung. Bemerkenswert ist der große Anstieg der Erstarrungsrate mit abnehmender Teilchengröße.

Bei der Betrachtung der Ergebnisse darf nicht vergessen werden, dass die Pulverteilchen angeschliffen wurden und daher die Querschnitte der Pulverteilchen keine Flächen größter Ausdehnung darstellen. Aus diesem Grund war eine exakte Angabe des Pulverteilchendurchmessers in der Tabelle 5.2 nicht möglich.
5.2 Gehipter Stahl

Da die gehipten Kapseln auch ohne Warmumformung weiterverarbeitet werden (siehe Kap. 2), wurde das Gefüge aller Pulverfraktionen in diesem Zustand untersucht und die Karbidgrößenverteilung ermittelt.

Abb. 5.12 zeigt das Gefüge des S290PM Standardpulvers im gehipten Zustand anhand einer rasterelektronenmikroskopischen Aufnahme. Die Abbildung zeigt einen hohen Anteil kleiner, fein verteilter Karbide, die sich anhand ihres Grauwertes eindeutig unterscheiden lassen. Im Vergleich zum Karbidnetzwerk des verdüsten Pulvers (Abb. 5.7 - Abb. 5.9) ist erkennbar, dass sich die Karbide während des HIP - Prozesses eingeformt haben. Wie der XRD Scan (Abb. 5.13) bestätigt, handelt es sich dabei um Karbide des Typs M_6C (erscheint weiß) und MC (erscheint hellgrau), eingebaut in einer martensitischen Matrix. Im Fall des S290PM Standard beträgt der ungefähre mittlere Durchmesser der M_6C Karbide 0.8 μm und der der MC Karbide 0.5 μm. Neben den Karbiden sind einige nichtmetallische Einschlüsse, die in...
den REM-Bildern (Abb. 5.12, Abb. 5.15, Abb. 5.19) als schwarze Punkte erkennbar sind, vorhanden. Diese nichtmetallischen Einschlüsse mit typischen Abmessungen von 1 μm wurden mittels EDX als Mangansulfide identifiziert. Bei einigen nichtmetallischen Einschlüssen handelt es sich auch um Al-, Mg-, Ca-Oxide was auf Schlacke, welche aus dem Tundish mitgerissen wurde, schließen lässt.

![XRD Scan des gehipten Zustandes des S290PM Standard (Strahlung CuKα). Jene Peaks, die eindeutig identifiziert werden konnten sind entsprechend gekennzeichnet.](image)

5.2.1 Computertomographie

Die hohe Porosität des Ausgangspulvers gab den Anstoß dazu, den gehipten Zustand genauer hinsichtlich Poren und anderer Werkstoffinhomogenitäten zu untersuchen. Deshalb wurde eine Computertomographie (siehe Kap. 4.9) am Österreichischen Gießereinstitut in Leoben (ÖGI) durchgeführt.

Bei der Verdüsen mit Argon kommt es häufig zu Argonporosität im Pulver, welche nach dem Hipen des Pulvers und einer anschließenden Wärmebehandlung zu dem Phänomen der „thermisch induzierten Porosität“ führen kann. Thermisch induzierte
Porosität entsteht dadurch, dass Argon während des HIP-Prozesses nicht in der Matrix gelöst wird und dieses Gas bei der anschließenden Wärmebehandlung bei Atmosphärendruck Gasblasen im Werkstoff bildet [33]. Da in diesem Fall mit Stickstoff verdüst wurde, und Stickstoff als unschädlich in Werkzeugstählen aufgefasst wird [23], kann eine thermisch induzierte Porosität im Endprodukt ausgeschlossen werden.

Abb. 5.14: Axialer Schnitt durch den Werkstoff S290PM Standard, erhalten durch Computertomographie

Abb. 5.14 zeigt den axial geschnittenen Werkstoff S290PM Standard im gehipten Zustand. Die Nachweigrenze des Verfahrens wurde in diesem Fall vom ÖGI mit > 20 μm abgeschätzt. Da in allen Abbildungen und Schichtfilmen der Computertomographie keine Poren oder Einschlüsse gefunden wurden, kann festgestellt werden, dass im untersuchten Volumen keine Inhomogenitäten größer als 20 μm vorhanden sind. Da auch in Rasterelektronenmikroskop- (siehe Abb. 5.15) und - nicht gezeigten - Lichtmikroskop...
- Bildern des gehipten Zustands keine Poren sichtbar sind, kann davon ausgegangen werden, dass ein dichter Werkstoff frei von Restporosität entstanden ist. Das bedeutet, die Pulverporosität hat sich nicht negativ auf den gehipten Zustand ausgewirkt.
5.2.2 Auswirkungen der Pulverfraktionen auf das Gefüge im gehipten Zustand

Abbildungen 5.15 a) - c) stellen die Gefügebilder verschiedener Pulverfraktionen des S290PM im gehipten Zustand gegenüber:

Abb. 5.15: Vergleich der Mikrostruktur verschiedener Pulverfraktionen im gehipten Zustand:
 a) < 56 μm, b) S290PM Standard, c) > 355 μm

Aus Abb. 5.15 ist ersichtlich, dass die höhere Abkühlgeschwindigkeit des feineren Pulvers die Größe und Verteilung der Karbide im gehipten Zustand, aber nicht die

Tabelle 5.3: Flächenanteil (Volumenanteil) der Karbide im gehipten Zustand des S290PM

<table>
<thead>
<tr>
<th>Pulverfraktion</th>
<th>Flächenanteil MC [%]</th>
<th>Flächenanteil M₆C [%]</th>
<th>Gesamtkarbidgehalt [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 56 μm</td>
<td>10.3</td>
<td>11.4</td>
<td>21.7</td>
</tr>
<tr>
<td>> 56 μm</td>
<td>9.7</td>
<td>12.1</td>
<td>21.8</td>
</tr>
<tr>
<td>> 75 μm</td>
<td>9.2</td>
<td>11.2</td>
<td>20.4</td>
</tr>
<tr>
<td>> 125 μm</td>
<td>11.9</td>
<td>10.2</td>
<td>22.1</td>
</tr>
<tr>
<td>> 212 μm</td>
<td>13.4</td>
<td>10.7</td>
<td>24.1</td>
</tr>
<tr>
<td>> 355 μm</td>
<td>12.9</td>
<td>11.7</td>
<td>24.6</td>
</tr>
<tr>
<td>S 290 (Standard)</td>
<td>10.2</td>
<td>10.2</td>
<td>20.4</td>
</tr>
</tbody>
</table>

Die Bestimmung des Karbidgehaltes des S290PM Standard im gehipten Zustand, ergab einen sehr hohen Gesamtkarbidgehalt von über 20 % (siehe Tabelle 5.3). Etwa die Hälfte des Karbidgehalts entfällt auf MC Karbide und die andere Hälfte auf
M₆C Karbide. Über die Ursachen der unterschiedlichen Gesamtkarbidgehalte verschiedener Pulverfraktionen (20.4 – 24.6 %) können nur Vermutungen angestellt werden. Als wahrscheinlichste Ursachen können Messfehler und die Auswirkungen der unterschiedlichen Erstarrungsstruktur der Teilchen verschiedener Pulverfraktionen genannt werden.

Durch Detektion der Karbide aufgrund ihres unterschiedlichen Phasenkontrasts in rasterelektronenmikroskopischen Aufnahmen mit der Software AnalySIS konnten die Teilchen nach ihrer Größe in Klassen eingeteilt und der Flächenanteil jeder Klasse ermittelt werden. Die so erhaltenen Karbidgrößenverteilungen aller Pulverfraktionen im gehüpten Zustand zeigt Abb. 5.16.

Bei Betrachtung der Karbidgrößenverteilungen fällt auf, dass die im Vergleich zum Standardpulver sehr groben Pulverfraktionen > 212 µm und > 355 µm einen geringeren Flächenanteil an kleinen Karbiden aufweisen. Dafür nimmt der Flächenanteil der großen Karbidklassen zu. Dieser Sachverhalt zeigt sich besonders im Fall der M₆C Karbide, da nur in den Pulverfraktionen > 125 µm Karbide der Klasse 7 (4.2 – 4.9 µm) und Klasse 8 (4.9 – 5.6 µm) auftreten.
Abb. 5.16: Karbidgrößenverteilung der M₆C und MC Karbide im gehipten Zustand (Vergleich aller Pulverfraktionen). Die Balken der fehlerhaft ausgesiebten Pulverfraktionen 56.1 – 75 µm und 75.1 – 125 µm sind zur besseren Sichtbarkeit weiß und hellgrau dargestellt.
Darüber hinaus können aus den Karbidgrößenverteilungen folgende Aussagen getroffen werden:

- Im Fall der M₆C Karbide treten im gehipten Stahl der groben Pulverfraktionen deutlich größere Karbide auf als im Stahl der feinen Pulverfraktionen. Zum Beispiel waren im S290 Standard die größten detektierten Karbide < 3.5 µm, während im Stahl des gröbsten Pulvers (> 355 µm) Karbide bis zu ca. 6 µm festgestellt wurden.

- Im Fall der MC Karbide treten im gehipten Stahl der groben Pulverfraktionen zwar keine größeren Karbide auf, allerdings nimmt der Flächenanteil der größeren Karbidklassen auf Kosten der kleineren zu. Während beim S290 Standard keine Karbide in der Größenklasse 4.2 - 4.9 µm auftreten, sind beim gehipten Stahl der Pulverklasse > 355 µm nahezu 0.5 Flächenprozent innerhalb dieser Klasse.

Um genauere Aussagen über die einzelnen Karbide zu gewinnen, wurden alle detektierten Karbide innerhalb einer definierten Messfläche, ca. 110 x 75 µm² (je ein REM - Bild), nach ansteigender Fläche geordnet. Das auf diese Weise für die M₆C Karbide erhaltene Diagramm zeigt Abb. 5.17. Auf die Darstellung des gehipten Zustandes der fehlerhaft ausgesiebten Pulverfraktionen wurde verzichtet.

Abb. 5.17: Fläche der M₆C Karbide im gehipten Zustand des S290PM (die Karbide wurden nach ansteigender Größe gereiht und die Fläche der einzelnen Karbide eingetragen)

5.2.3 Auswirkung der Pulverfraktion auf die Härte des gehipten Materials

Um festzustellen, ob sich die Unterschiede in der Mikrostruktur der verschiedenen Pulverfraktionen auf die Härte auswirkt, wurde diese für das gehipte Material jeder Pulverfraktion mit der der Methode nach Rockwell C (siehe Kap. 4.8) bestimmt und verglichen.
Abb. 5.18 stellt die Härte des gehipten Materials verschiedener Pulverklassen gegenüber:
Die Härte des S290PM Standard im gehipten Zustand beträgt rund 44 HRC.

![Graphik](attachment://image.png)

Abb. 5.18: Vergleich der Härte der Stähle verschiedener Pulverfraktionen im gehipten Zustand. S290 und S290 u kennzeichnen beide das gehipte Standardpulver des Werkstoff S290 PM.

Die geringen Härteunterschiede der Stähle verschiedener Pulverklassen waren auch zu erwarten, da die Stähle aller Pulverfraktionen eine identische chemische Zusammensetzung besitzen und die Pulver unter gleichen Bedingungen
(Temperatur, Druck) kompaktiert wurden. Die geringen Unterschiede im Karbidgehalt der Stähle (siehe Tabelle 5.3 und Abb. 5.15) reichen nicht aus um messbare Härteunterschiede zu verursachen.

Bei der Bestimmung der Härte am Rand, in der Mitte und zwischen Rand und Mitte der Schliffläche eines Kapselquerschnittes wurde festgestellt, dass es keine messbare Tendenz in der Veränderung der Härte über den Querschnitt gibt. Die gehipten Fingerkapseln (siehe Abb. 4.2) weisen vom Werkstoffinneren bis zum Rand eine innerhalb der Messungenaugigkeit identische Härte auf.

5.3 Stabstahl gehärtet

In diesem Abschnitt wird zunächst das Gefüge des S290PM Standard im gehärteten Zustand kurz charakterisiert und ein Vergleich zum gehipter Zustand hergestellt. Im Anschluss daran erfolgt eine Darstellung der gemessenen Korngrößen im S290PM verschiedener Pulverfraktionen und unterschiedlicher Austenitisierungsbedingungen.

5.3.1 Mikrostruktur des gehärteten Zustandes

Abb. 5.19: Gefüge des S290PM Standard im gehärteten Zustand (Austenitisierungstemperatur 1190°C, Haltezeit 3 min).

Da der relative Anteil an aufgelösten Karbiden für alle gehärteten Zustände verschiedener Pulverfraktion als identisch angenommen wird, wurde auf weitere Vergleiche mit dem gehärteten Zustand verzichtet.

5.3.2 Korngröße

Es ist allgemein bekannt, dass sich ein feines Korn vorteilhaft auf die mechanischen Eigenschaften auswirkt. In Bezug auf die Bruchfestigkeit gilt, dass mit zunehmender Kornfeinheit die notwendige Spannung für die Bruchinitierung ansteigt [73].

Die Bestimmung der Austenitkorngröße wurde entsprechend der ASTM Norm über ein Linienschnittverfahren an den gehärteten Proben durchgeführt. Dazu wurden lichtmikroskopische Aufnahmen der Probenschliffe im gehärteten Zustand angefertigt, wobei die Korngrenzen durch Ätzung mit HNO₃ sichtbar gemacht wurden.

Die Abb. 5.20 zeigt repräsentativ für alle Pulverfraktionen eine lichtmikroskopische Aufnahme des Härtegefüges des S290PM (Pulverklasse < 56 μm):
Im Härtegefüge (Abb. 5.20) sind deutlich die ehemaligen Austenitkorngrenzen ersichtlich, an denen sich zahlreiche Karbide befinden die während des Härteprozesses nicht aufgelöst wurden.

Die Ergebnisse der Korngrößenbestimmung (Tabelle 5.4) machen klar, dass die Korngröße mit ca. 2.4 – 3.7 μm, im Vergleich zu schmelzmetallurgisch hergestellten Schnellarbeitsstählen, außerordentlich klein ist [36,73]. Verantwortlich für die kleinere Korngröße ist das wesentlich feinere Ausgangsgefüge, welches durch das feinkörnige Pulver erhalten wird, in Kombination mit einem hohen Anteil an unaufgelösten Karbiden, die das Austenitkornwachstum auch bei hohen Temperaturen wirksam behindern (siehe Kap. 3.4.2). Die Austenitisierungstemperatur von 1130°C mit Haltezeit ~ 8 min und die Austenitisierungstemperatur von 1190°C mit einer Haltezeit von ~ 3 min führen innerhalb üblicher Schwankungen und Messungsnauigkeiten zu unveränderten Korngrößen. Die Korngröße des S290 Standard (gewalzt) beträgt in beiden Fällen rund 2.5 μm. Die in der Tabelle 5.4 rot gekennzeichneten Korngrößen stellen den direkten Vergleich zwischen den Korngrößen des gewalzten und geschmiedeten Stahls der Klasse > 75 μm und dem S290 Standard her. Nach Angaben von BÖHLER waren die Umformgrade aller Klassen vergleichbar hoch. Offensichtlich führt die Herstellung über die Walzroute zu einer etwas kleineren Korngröße von ca. 2.5 bzw. 3.1 μm. Zum Vergleich besitzt der
durch Schmieden umgeformte Stahl derselben Fraktion eine Korngröße von ca. 2.9 μm (S290 Standard) bzw. 3.7 μm (> 75 μm).

Tabelle 5.4: Korngröße der gehärteten Stähle aller Pulverfraktionen des Werkstoffs S290PM. Die letzte Zeile vergleicht die Korngröße von Anfang, Mitte und Ende eines Stahlstabes. Haltezeiten: bei Härtetemperatur 1130°C ca. 8 min und 1190°C ca. 3 min

<table>
<thead>
<tr>
<th>Teilchengrößenklasse / Umformverfahren</th>
<th>Korngröße [μm] (Härtetemperatur 1130°C)</th>
<th>Korngröße [μm] (Härtetemperatur 1190°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 56 / geschmiedet</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>> 56 / gewalzt</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>> 75 / geschmiedet</td>
<td>2.7</td>
<td>3.7</td>
</tr>
<tr>
<td>> 75 / gewalzt</td>
<td>2.4</td>
<td>3.1</td>
</tr>
<tr>
<td>> 125 / geschmiedet</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>> 212 / geschmiedet</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>> 355 / geschmiedet</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>S 290 / geschmiedet</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>S 290 / gewalzt</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>< 56 / geschmiedet: Anfang - Mitte - Ende</td>
<td>-</td>
<td>3.5 – 3.7 – 3.6</td>
</tr>
</tbody>
</table>

Die letzte Zeile der Tabelle 5.4 stellt die Korngröße von Anstich, Mitte und Ende eines über 2 m langen Stabstahles, der durch Schmieden in diese Form gebracht wurde, gegenüber. Die Korngröße hat sich vom Anstich über die Länge des Stabstahls nicht merklich verändert.

5.4 Härte - Anlassverhalten

Ausgehend vom gehärteten Zustand wurden die Härtedummys gemäß Kap. 4.5.1 einer Anlassbehandlung, bestehend aus drei Anlasszyklen bei identischer Temperatur, unterzogen.

5.4.1 Härte - Anlasskurve des S290PM Standard

Die Probenvorbereitung und Wärmebehandlung zur Bestimmung der Härte-Anlasskurven erfolgte gemäß Kap. 4.5.1.
Abb. 5.21: Härte - Anlasskurve des S290PM (Standard), Austenitisierung: 1190°C für 3 min und 1130°C für 8 min, abgeschreckt in Stickstoff (\(\lambda = 0.2 – 0.3\)); 3x2 Stunden angelassen

Abb. 5.21 zeigt den Effekt der Anlasstemperatur auf die Härte des Werkstoffs S290PM (Standardpulver) für die Austenitisierungstemperaturen 1130°C und 1190°C. Der höhere Restaustenitgehalt nach dem Abschrecken von der höheren Härgetemperatur ist für die geringere Ansprunghärte verantwortlich (rote Kurve) [41]. Die Ursache für den höheren Restaustenitgehalt ist die mit zunehmender Austenitisierungstemperatur herabgesetzte Martensitendtemperatur (vgl. Kap. 3.4.2).

Das Sekundärhärtemaximum liegt für beide Austenitisierungsbedingungen bei ca. 520 °C. In beiden Fällen konnte im Bereich des Sekundärhärtemaximums eine Härte über 70 HRC erreicht werden. Die Peakhärte (Sekundärhärtemaximum) liegt bei der höheren Austenitisierungstemperatur knapp über jener Probe, die bei 1130°C gehärtet wurde (70.8 zu 70.4 HRC). Offensichtlich wurden durch die höhere Härgetemperatur, trotz der geringeren Haltezeit von drei Minuten, mehr Karbide aufgelöst als bei der geringeren Härgetemperatur. Der erhöhte Anteil an Legierungselementen im Austenit hat dann zu einer stärkeren Übersättigung der Matrix nach dem Abschrecken geführt. Wie in Kap. 3.4.2 gezeigt wurde, führt ein höherer Gehalt an Legierungselementen dann zu einer vermehrten Ausscheidung von Sekundärhärtekarbiden, was die größere Härtezunahme erklärt.

Bei Anlasstemperaturen über 520°C nimmt die Härte rasch ab, sie liegt aber bei einer Temperatur von 600°C noch bei hohen 63.5 HRC (Härgetemperatur 1130°C) bzw. 65 HRC (Härgetemperatur 1190°C). Wie im Literaturteil (Kap. 3.5.1) dargestellt
wurde, ist der Härteverlust auf ein Vergröbern der Sekundärhärtekarbide, dem fortschreitenden Martensitzerfall und auf Erholungs- und Rekristallisationsvorgänge zurückzuführen.

5.4.2 Vergleich der Pulverfraktionen
Abb. 5.22 und Abb. 5.23 zeigen vergleichend die Härte - Anlasskurven der Stähle verschiedener Pulverfraktionen:

Abb. 5.22: Vergleich der Härte - Anlasskurven der Proben aller Pulverfraktionen. Härtemperatur: 1130 °C, Haltezeit: 8 min, 3 x 2 h angelassen

Abb. 5.23: Vergleich der Härte - Anlasskurven der Proben aller Pulverfraktionen. Härtemperatur: 1190 °C, Haltezeit: 3 min, 3 x 2 h angelassen

5.5 Karbidgrößenverteilung des vergüteten Zustandes

Analog zur Vorgehensweise im gehütteten Zustand (siehe Kap. 5.2.2) wurde auch die Karbidgrößenverteilung vom vergüteten Zustand bestimmt. Dabei wurden nur die Extrema der Pulverklassen im Vergleich zum S290 Standard sowie die beiden vergüteten Zustände gleicher Pulverfraktion (> 75 μm), die durch Walzen bzw. Schmieden umgeformt wurden, betrachtet.

Wie zu erwarten war hat sich der Gesamtkarbidgehalt im Vergleich zum gehütteten Zustand nur geringfügig verändert. So wurde beim S290 Standard im vergüteten Zustand ein Karbidgehalt von 19.6 % gegenüber 20.4 % im gehütteten Zustand ermittelt. Die Messungen des Karbidgehaltes zeigen eindeutig, dass keine signifikanten Unterschiede im Karbidgehalt zwischen Stählen verschiedener Pulverfraktionen auftreten. Der durchschnittliche Gesamtkarbidgehalt aller Pulverfraktionen beträgt im vergüteten Zustand ca. 20 %, verglichen mit 22 % im gehütteten Stahl. Diese Abnahme des Karbidgehalts ist vor allem auf den Rückgang der thermisch weniger stabilen M6C Karbide zurückzuführen, die beim Austenitisieren in Lösung gegangen sind. Ihr Gehalt ist von durchschnittlich 11 % im gehütteten Zustand auf 8 % im vergüteten Zustand gesunken, was einer Abnahme von 3 %
entspricht. Dafür wurden im Fall der MC Karbide vergleichbar hohe Karbidgehalte wie im gehipten Zustand gemessen. In einigen Fällen wurde im vergüteten Zustand sogar ein etwas höherer Anteil an MC Karbiden festgestellt. Ein Grund dafür könnte sein, dass sich zwar die Anzahl der Karbide im Zuge der Wärmebehandlung verringert, aber gleichzeitig die Größe der Karbide leicht zugenommen hat. Tatsächlich hat sich der mittlere Durchmesser der M₆C Karbide des S290 Standards von 0.8 μm im gehipten Zustand auf 0.9 μm und jener der MC Karbide von 0.5 auf 0.7 μm leicht vergrößert.

![Diagramme mit Flächenanteil von Karbiden](image)

Abb. 5.24: Karbidgrößenverteilung der M₆C Karbide (oben) und MC Karbide (unten) im vergüteten Zustand (Vergleich der Pulverfraktionen < 56 μm, Standard, > 75 μm gewalzt und geschmiedet und > 355 μm).

Anhand der Karbidgrößenverteilung (Abb. 5.24) und einem optischen Vergleich der Gefügebilder der gewalzten und geschmiedeten Pulverfraktion > 75 μm kann festgestellt werden, dass das Umformverfahren Walzen / Schmieden in diesem Fall keinen gravierenden Einfluss auf die Verteilung und die Größe der Karbide ausübt.

5.6 Ergebnisse der Zugversuche

Mit den Kugelkopfproben aller Pulverfraktionen wurden Zugversuche bei Raumtemperatur durchgeführt. Die Ausnahme stellt die Fraktion > 355 μm dar, die aufgrund der in Kap. 4.6.1 beschriebenen Härterisse nicht geprüft werden konnte. Die der Zugprüfung vorangehende Probenherstellung und Wärmebehandlung wurde bereits in Kap. 4.6.1 erläutert.

Abb. 5.25 zeigt das Spannungs-Dehnungs-Diagramm einer S290PM Standard Zugprobe. Sie steht repräsentativ für alle geprüften Proben, da keine Unterschiede im Bruchverhalten aufgetreten sind. Der Bruch der Probe erfolgte bereits vor dem Erreichen einer plastischen Verformung. Daher ist die Angabe einer 0.2 % Streckgrenze nicht möglich und die Spannungs-Dehnungs-Kurve ist auf die elastische Gerade reduziert.

Abb. 5.25: Spannungs-Dehnungs-Diagramm einer Kugelkopfprobe (S290PM Standard, vergütet: Härtemperatur 1190°C, Haltezeit 3 min, 3x2h angelassen bei 560°C, Härte 69 HRC)
Da bei allen Stählen der Bruch vor dem Erreichen einer messbaren plastischen Verformung eingetreten ist, kann als Festigkeitskenngröße nur die Bruchfestigkeit und der Elastizitätsmodul angegeben werden. Die Verformungskenngrößen Bruchdehnung, Gleichmaßdehnung und Brucheinschnürung sind aufgrund der fehlenden plastischen Verformung bei allen Proben Null. Die gemessenen

Die höchste Bruchfestigkeit erreichten die Proben des S290 Standard (gewalzt) mit durchschnittlich 2280 MPa. Der S290 Standard hatte im Vergleich zu den Stählen der anderen Pulverfraktionen auch die kleinste Korngröße von ca. 2.5 μm (vgl. Kap. 5.3.2).

Wie Abb. 5.26 and Abb. 5.27 zeigen, streuen die Bruchfestigkeiten der Proben verschiedener Pulverfraktionen sehr stark und es ist keine Tendenz in der Veränderung der Bruchfestigkeit mit der Pulverklasse zu erkennen. Es zeigt sich aber, dass ausnahmslos alle Proben deren Halbzeug durch Walzen hergestellt wurde, eine höhere Bruchfestigkeit erreicht haben, als jene, die durch Schmieden umgeformt wurden. Aus diesem Grund sind die Ergebnisse der Bruchfestigkeiten für die Proben des gewalzten und geschmiedeten Halbzeugs in zwei Balkendiagramme (Abb. 5.26 und Abb. 5.27) getrennt dargestellt.

Eine detaillierte Diskussion dieser unerwarteten Ergebnisse und der Defekte die zum frühzeitigen Versagen aller Proben führten, erfolgt im Diskussionsteil in Kapitel 6.2.1.

5.7 Ergebnisse der Bruchzähigkeitsbestimmung

Eine Übersicht der verwendeten Proben, deren vorangehende Wärmebehandlung sowie die Durchführung der Prüfung finden sich in Kap. 4.7 und 4.7.1. Da alle Proben die Kriterien gemäß ASTM E399-97 erfüllt haben, ist die Angabe eines K_{IC}-Wertes zulässig.
Abb. 5.28 zeigt die K_{IC} - Werte der Stähle verschiedener Pulverfraktionen. Von jeder Pulverklasse wurden 5 Proben geprüft und über die erhaltenen Bruchzähigkeiten gemittelt.

Die Bruchzähigkeiten der Proben liegen zwischen 8.5 MPa m$^{1/2}$ (> 56 µm gewalzt, S290 Standard gewalzt, > 355 µm) und 9.2 MPa m$^{1/2}$ (< 56 µm). Wie Abb. 5.28 zeigt, erreichte der Stahl der feinsten Pulverfraktion (< 56 µm) die höchste Bruchzähigkeit und der Stahl aus dem gräbsten Pulver (> 355 µm) den geringsten Wert. Die Differenz von 0.7 MPa m$^{1/2}$ ist aber zu gering, um von einem Ansteigen der Bruchzähigkeit mit abnehmender Pulvergröße zu sprechen. Diese Feststellung wird durch den folgenden Vergleich bestätigt. Da sowohl der S290 Standard als auch der Stahl des Pulvers > 355 µm, welcher gegenüber dem Standard deutlich größere Karbide und Karbidcluster besitzt (vgl. Kap. 5.2.2), den gleichen Wert der Bruchzähigkeit erreicht haben (8.5 MPa m$^{1/2}$), kann davon ausgegangen werden, dass die Karbidgröße hier keinen messbaren Einfluss auf die Bruchzähigkeit besitzt. Tatsächlich liegen die Mittelwerte der Bruchzähigkeiten innerhalb eines messtechnisch bedingten Streubereichs, der mögliche Einflüsse der Pulverfraktion auf den K_{IC} - Wert überdeckt. Da keine großen Unterschiede in den Bruchzähigkeiten auftreten, können demnach auch keine Trends vermutet werden.
Die Proben aus dem Stabstahl der Pulverklasse (75 – 125 μm) zeigen, unabhängig ob sie durch Schmieden und Walzen hergestellt wurden, im vergüteten Zustand eine Bruchzähigkeit von 8.8 MPa m$^{1/2}$. Das vorangehende Umformverfahren hat sich offensichtlich nicht auf die Höhe der Bruchzähigkeit ausgewirkt. Eine Diskussion möglicher Ursachen für die Unabhängigkeit der Bruchzähigkeit von der Pulverfraktion erfolgt in Kap. 6.2.2.

6 Diskussion der Ergebnisse

6.1 Porosität im Pulver

Aus der wenigen Literatur über Porosität bei Verdüsnungsprozessen ist bekannt, dass alle verdüsten Pulver, unabhängig vom Verdüsnungsverfahren und Verdüsnungsgas, mehr oder weniger Poren enthalten [74].

Als mögliche Ursache für Porosität in gasverdüsten Pulvern gilt allgemein [74]:

- Einfangen von Verdünnungsgas während der Teilchenbildung im Verdünsungsprozess (besonders beim Verdüsen mit Ar oder He)
- Kollisionen der Teilchen im noch schmelzflüssigen Zustand
- Blasenbildung von gelösten Gasen bei dem Phasenübergang fest \(\rightarrow\) flüssig (besonders H$_2$ und möglicherweise CO)
- Schrumpfung (Hohlraumbildung) bei der Erstarrung

Viel wahrscheinlicher als Teilchenkollisionen, die nur unter bestimmten Bedingungen zu Porosität führen können, sind Gaseinschlüsse durch das Verdünnungsgas. Es

Für das Verdüngungsgas Stickstoff (N\textsubscript{2}) wurde errechnet, dass eine Konzentration von 1 ppm des eingeschlossenen Gases bei 1000°C und einem inneren Gasdruck von 1 bar höchstens 3 % (Flächenprozent) Porosität im Pulver hervorruf [74]. Weitere Beispiele zeigt die Tabelle 6.1, wobei ein möglicher Überdruck in den Poren nicht berücksichtigt wurde. Es ist aber ein Überdruck in den Poren möglich, sodass die Werte der Tabelle 6.1 in diesem Fall deutlich nach unten korrigiert werden müssen.

Tabelle 6.1: Errechnete Porosität in Abhängigkeit vom Verdüngungsgas, nach dem Modell des Gaseinschlusses [74]

<table>
<thead>
<tr>
<th>Verdüngungsgas</th>
<th>Ar</th>
<th>H\textsubscript{2}</th>
<th>N\textsubscript{2}</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächen-% Porosität, hervorgerufen durch 1 ppm Gaseinschluss:</td>
<td>2</td>
<td>40</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Über die **Auswirkungen der Pulverporosität** auf die mechanischen Eigenschaften des Endprodukts gibt es kaum konkrete Untersuchungen. Am besten untersucht sind Titanaluminid Legierungspulver, die mit Ar - Gas verdüst werden und häufig entsprechende Ar - Porosität zeigen. Hier zeigt sich, dass die Ar - Porosität durch das Schrumpfen der Poren im HIP - Prozess unter die Nachweigrenze gesenkt wird. Das bedeutet, dass die Poren des gehipten Zustands im Lichtmikroskop unsichtbar werden [32]. Messungen am gehipten Material zeigen aber, dass die Ar - Konzentration durch den Kompaktierungsprozess vergleichbar hoch bleibt. Bei einer nachfolgenden Wärmebehandlung wachsen die Poren durch die mit der Temperaturerhöhung verbundene Verringerung des inneren Porendrucks und der Festigkeit des Materials und deformieren die umgebende Matrix [76]. Die Folge dieser Gasausdehnung ist die schon in Kap. 5.2.1 erwähnte “thermisch induzierte Porosität“.
6.2 Mechanische Prüfung

6.2.1 Zugversuche

Die Ergebnisse in Kap. 5.6 haben gezeigt, dass die Kugelkopfproben verschiedener Pulverfraktionen bei stark unterschiedlicher Spannung gebrochen sind. Allerdings war kein Trend in der Veränderung der Bruchfestigkeit mit ansteigender Pulverklasse feststellbar. Dieser Abschnitt verfolgt das Ziel, die möglichen Ursachen für dieses unerwartete Ergebnis zu diskutieren.

Aus der Literatur ist bekannt, dass bei der Prüfung hochfester Stähle, wie dem in dieser Arbeit untersuchten S290PM, die Einspannung der Proben als kritisch zu betrachten ist. Der Grund dafür sind die durch die Einspannung hervorgerufenen Biegespannungen, die bei spröden Werkstoffen durch die oberflächennahe Spannungserhöhung bruchauslösend wirken können. Für das Auftreten von Biegespannungen in Zugproben gibt es folgende Ursachen [64]:

- Verzug der Zugproben
- keine ideale Axialsymmetrie der Proben
- nicht exakte Justierung der Proben in der Zugprüfmaschine

Im konkreten Fall kann davon ausgegangen werden, dass die Prüfung korrekt durchgeführt wurde und bei allen Versuchen, soweit möglich, identische Prüfbedingungen herrschten. Als mögliche Ursache für die große Streuung der Fließkurven bleibt daher nur der Werkstoff selbst übrig. Da anisotrope mechanische Eigenschaften aufgrund der pulvermetallurgischen Herstellroute auszuschließen sind und größere Schwankungen der chemischen Zusammensetzung der Proben durch...
die Herstellung aus der selben Schmelze nicht möglich sind, liegt die Annahme nahe, dass Gefügeinhomogenitäten die Streuungen der Bruchfestigkeiten verursacht haben. Als bruchauslösende Defekte kommen daher Karbidcluster, nichtmetallische Einschlüsse oder Poren in Frage, da sie deutlich größer als die größten Einzelkarbide sind (siehe Abb. 6.6).

Um die bruchauslösenden Defekte, die zum frühzeitigen Versagen der Zugproben geführt haben zu identifizieren, wurde eine Untersuchung der Bruchflächen im Rasterelektronenmikroskop durchgeführt. Tatsächlich konnte durch eine Untersuchung der Bruchflächen im Rasterelektronenmikroskop die in Tabelle 6.2 zusammengefassten bruchauslösenden Defekte identifiziert werden. Abb. 6.1 - 6.4 zeigt exemplarisch eine rasterelektronenmikroskopische Aufnahme des Defekts in einer Zugprobe, der bruchauslösend wirkte. Die Reihenfolge der Abbildungen 6.1 - 6.4 stimmt mit der in Tabelle 6.2 überein.

Abb. 6.1: Rasterelektronenmikroskopische Aufnahme des bruchauslösenden Defekts in einer Zugprobe der Pulverfraktion < 56 μm (geschmiedet): Pore
Abb. 6.2: Rasterelektronenmikroskopische Aufnahme des bruchauslösenden Defekts in einer Zugprobe der Pulverfraktion > 75 μm (geschmiedet): Pore

Abb. 6.3: Rasterelektronenmikroskopische Aufnahme des bruchauslösenden Defekts in einer Zugprobe der Pulverfraktion > 56 μm (gewalzt): Einschluss aus Wolfram (Sekundärelektronen-Aufnahme)
Tabelle 6.2 zeigt, dass die Abmessung des Defekts der im konkreten Fall den Bruch ausgelöst hat, einen entscheidenden Einfluss auf die Höhe der Bruchfestigkeit ausübt. Große Defekte, wie Poren in Abb. 6.1, können fatale Folgen für das Werkzeug unter statischer Belastung haben, wie die extrem geringen Bruchfestigkeiten zeigen. Diese Defekte wirken sich aber auch katastrophal auf die dynamischen Festigkeitskennwerte aus [78].

Durch eine zusätzliche Untersuchung der Bruchfläche mit dem Stereomikroskop konnte festgestellt werden, dass in allen Zugproben des geschmiedeten Materials Poren als bruchauslösende Defekte wirkten. Als Ursache für die viel zu geringe

In den Zugproben des gewalzten Materials hingegen wurden keine Poren, sondern nichtmetallische Einschlüsse und ein Wolfram - Einschluss als bruchauslösende Defekte gefunden. Der Wolframeinschluss (vgl. Abb. 6.3) stammt wahrscheinlich vom Siebprozess, da die Firma die das Aussieben durchgeführt hat, überwiegend mit Wolfram arbeitet.

Die im Vergleich zu den Poren im geschmiedeten Material kleinere Größe dieser Defekte erklärt die allgemein höhere Bruchfestigkeit der gewalzten Pulverfraktionen (siehe Abb. 5.27). Leider konnten im gewalzten Material des S290PM Standard und der Pulverfraktion > 75 μm keine bruchauslösenden Defekte an der Bruchfläche gefunden werden, da Teile der Bruchfläche abgesplittert sind. Aufgrund der deutlich höheren Bruchfestigkeiten dieser Fraktionen (1650 – 2460 MPa) und der Tatsache, dass im Gegensatz zu den Proben, bei denen die Umformung durch Schmieden erfolgte ein Absplittern der Bruchfläche beobachtet wurde, lässt vermuten, dass in diesen Proben keine oder nur sehr geringe Porosität vorhanden ist.

Wie in Kap. 5.6 gezeigt wurde, sind die Zugfestigkeiten (hier Bruchfestigkeiten) der Stähle verschiedener Pulverfraktionen stark unterschiedlich. Da die Bruchfestigkeit verschiedener Probenserien trotz identischer Wärmebehandlung und chemischer Zusammensetzung um über 100% differiert (1033 MPa – 2282 MPa), kann über den Einfluss der Pulverfraktion auf die Festigkeit anhand dieser Untersuchung keine Aussage getroffen werden. Ein möglicher Einfluss der Pulverfraktion auf die Zugfestigkeit wurde durch die oben genannten negativen Einflüsse der Poren und
Verunreinigungen, die zweifelsfrei einen wesentlich stärkeren Einfluss auf die Bruchfestigkeit ausüben, überdeckt.

Rasterelektronenmikroskop und Computertomograph (siehe Abb. 5.12 und Abb. 5.14), konnte kein Hinweis für eine unzureichende Verdichtung beim HIP - Prozess gefunden werden. Allerdings sind dabei nur die kleineren Fingerkapseln (siehe Abb. 4.2) und nicht die deutlich größeren Kapseln, die zum Stabstahl weiterverarbeitet die Grundlage für die Probenfertigung darstellten, untersucht worden.

Aus diesen Ausführungen folgt, dass die Ursachen für das Auftreten von Poren im vergüteten Zustand, wie auch im Pulver, nicht restlos geklärt werden konnte.

6.2.2 Bruchzähigkeit

Nach dem Griffith Modell versagt ein Material durch Bruch, wenn unter einer Spannung σ ein Riss die kritische Länge a_C erreicht. Die Griffith Gleichung lautet [79]:

$$
K_{IC} = \sigma \cdot Y \cdot \sqrt{\pi \cdot a_C} \quad \text{(Glg. 6-1)}
$$

σ ... Bruchspannung
K_{IC} ... Rissbruchzähigkeit (Bruchzähigkeit)
a_C ... kritische Risslänge bzw. Defektgröße
Y ... Geometriefaktor

Der Radius der plastischen Zone vor der Riss spitze (r_p), kann mit Hilfe der Irwin Näherung berechnet werden [79]:

$$
 r_p = \frac{1}{6\pi} \left(\frac{K_{IC}}{\sigma_y} \right)^2 \quad \text{(Glg. 6-2)}
$$

K_{IC} ... Bruchzähigkeit (plane-strain fracture toughness)
σ_y ... Streckgrenze
Da die Streckgrenze im Zugversuch durch frühzeitiges Versagen der Proben nicht erreicht wurde, ist es notwendig einen Wert für die Streckgrenze \(\sigma_y \) anzunehmen. Es wurde ein aus anderen Untersuchungen von BÖHLER ermittelter Wert von 2800 MPa für \(\sigma_y \) in Glg. 6-1 und 6-2 angenommen. Weiters kann unter der Annahme eines geraden Risses in einer unendlich großen Probe der Geometriefaktor \(Y \) als 1 angenommen werden.

Die Tabelle 6.3 fasst die im Versuch gemessenen makroskopischen Ergebnisse mit den aus Gefügebildern ermittelten und theoretisch nach Glg. 6-1 und 6-2 errechneten mikroskopischen Gefügekennwerten zusammen:

Tabelle 6.3: Zusammenhang zwischen den gemessenen makroskopischen Eigenschaften (Härte und Bruchzähigkeit) und den Gefügeparametern (mittlerer Karbidabstand, Größe der plastischen Zone und kritische Fehlergröße) einiger Pulverfraktionen

<table>
<thead>
<tr>
<th>Pulverklasse</th>
<th>Herstellroute</th>
<th>Härte [HRC]</th>
<th>Bruchzähigkeit [MPa m(^{1/2})]</th>
<th>mittlerer Abstand zum nächsten Nachbarn: (r_P) / (a_c)</th>
<th>(r_P) [(\mu m)]</th>
<th>(a_c) [(\mu m)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 56 (\mu m)</td>
<td>PM – geschmiedet</td>
<td>68.3</td>
<td>9.2</td>
<td>1.3 / 1.9</td>
<td>0.6</td>
<td>3.4</td>
</tr>
<tr>
<td>S290</td>
<td>PM – gewalzt</td>
<td>68.8</td>
<td>8.5</td>
<td>0.8 / 1.8</td>
<td>0.5</td>
<td>2.9</td>
</tr>
<tr>
<td>> 75 (\mu m)</td>
<td>PM – geschmiedet</td>
<td>67.4</td>
<td>8.8</td>
<td>0.9 / 2.0</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>> 75 (\mu m)</td>
<td>PM – gewalzt</td>
<td>69.0</td>
<td>8.8</td>
<td>0.9 / 1.9</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>> 355 (\mu m)</td>
<td>PM – geschmiedet</td>
<td>68.8</td>
<td>8.5</td>
<td>0.9 / 3.0</td>
<td>0.5</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Wie im Literaturteil dargestellt wurde, sind Karbide sehr harte und entsprechend spröde Phasen. Der Abstand zwischen den Karbiden, also der Bereich verhältnismäßig zäher Matrix, ist daher für die Bruchzähigkeit von großer Bedeutung. Die angelassene martensitische Matrix kann zumindest einen Teil der beim Risswachstum frei werdenden Energie durch plastische Verformung dissipieren [18]. Der etwas größere mittlere Karbidabstand der MC Karbide im Gefüge der Probe < 56 \(\mu m \) könnte daher für die leicht erhöhte Bruchzähigkeit dieser Fraktion verantwortlich sein (siehe Tabelle 6.3).

Es ist bekannt, dass Primärkarbide aufgrund ihrer hohen Sprödigkeit bereits brechen, noch bevor die Rissspitze das Karbid tatsächlich erreicht hat [80]. Verantwortlich dafür ist die plastische Zone vor der Rissspitze. Durch die großen internen Spannungen, verursacht durch die äußere Kraftaufbringung, kann es auch zur Ablösung der Karbide von der Matrix kommen (siehe Kap. 3.5.3.1).
Bei dem Vergleich der errechneten Größe der plastischen Zone vor der Rissspitze (r_p) mit den mittleren Karbidabständen fällt auf, dass beide Werte in der gleichen Größenordnung liegen. Wird weiteberücksichtigt, dass die angegebenen mittleren Karbidabstände sich jeweils auf den kürzesten Abstand zu einem gleichartigen Karbidtyp beziehen und daher der kürzeste Abstand zum anderen Karbidtyp noch geringer ist, kann festgestellt werden, dass die Größe der plastischen Zone vor der Rissspitze mit dem mittleren Karbidabstand vergleichbar ist (Abb. 6.6). Diese Aussage ist aber für alle Pulverfraktionen gültig, denn die mittleren Karbidabstände sowie der Karbidgehalt sind weitgehend identisch (Tabelle 6.3).

Abb. 6.5: Bruchfläche der K_{IC}-Probe der Pulverfraktion < 56 μm. Im unteren Teil des Bildes ist der Ermüdungsbruch ersichtlich und darüber beginnt der Restbruch. (REM Aufnahme: Rückstreuelektronen)
Die Berechnung der kritischen Fehlergröße entsprechend Glg. 6-1 ergibt Werte zwischen ca. 3 μm und 3.5 μm (siehe Tabelle 6.3). Das bedeutet, die kritische Defektgröße ist größer als der Durchmesser einzelner Karbide. Die ermittelten Karbidgrößenverteilungen (Abb. 5.16 und Abb. 5.24) berücksichtigen aber keine Karbidcluster, welche aus verschiedenen Typen von Karbiden in direktem Kontakt zueinander aufgebaut sind. Wie Abb. 6.6 beweist, treten die MC und M₆C Karbide des S290PM jedoch häufig in direktem Kontakt miteinander auf und bilden Karbidpaare oder Cluster. Diese Karbidcluster wurden unabhängig von der Pulverfraktion, sowohl im gehipten als auch im gehärteten und angelassenen Zustand, beobachtet.

Abb. 6.6: Einzelne Karbide und Karbidcluster bestehend aus MC (hellgrau) und M₆C Karbiden (weiß) im vergüteten Zustand (S290 Standard). REM - Bild (Aufnahmemodus: Rückstreuelektronen)

Abb. 6.7: Gefügebilder der vergüteten Stähle der Klasse (a) S290 Standard (b) > 355 µm. Die Karbidcluster wurden zur besseren Sichtbarkeit schwarz eingefärbt. Beide Bilder haben 2000-fache Vergrößerung im Originalbild 9x13 cm²

Aus Abb. 6.7 geht hervor, dass das Gefüge des Stahls aus dem gröberen Pulver die größeren Einzelkarbide und Karbidcluster enthält. Der mittlere Abstand zum nächsten Karbidcluster ist aber in beiden Stählen vergleichbar hoch. So wurde im S290 Standard ein mittlerer Abstand zwischen den Karbidclustern von ca. 3 µm gemessen. Im Stahl der Klasse > 355 µm ist dieser Wert nur um 0.5 µm kleiner.

Die Ursachen für die geringen Unterschiede der Bruchzähigkeit der Stähle verschiedener Pulverfraktionen sind daher:

- Die Abstände der Karbide und Karbidcluster zum nächsten Nachbarn sind in den Stählen aller Pulverfraktionen weitgehend identisch.
- Der Karbidgehalt ist in allen Stählen vergleichbar hoch.
- Identische Wärmebehandlung und die Herstellung aus der selben Schmelze führen, abgesehen von möglichen Mikrosegregationen, zu vergleichbarem Gefügezustand und Härte.
- In allen Stählen finden sich Karbidcluster deren Abmessungen weit über die kritische Fehlergröße hinausgehen.
Da die Größe der plastischen Zone vor der Rissspitze (0.5 - 0.6 µm) viel kleiner als die Korngröße ist, hat die Korngröße nur eine untergeordnete Bedeutung für die Bruchzähigkeit (vgl. Kap. 3.5)

Aus den obigen Ausführungen folgt demnach, dass im speziellen Fall des S290PM der Karbidabstand in Proben verschiedener Pulverfraktion aber vergleichbarem Karbidgehalt, einen größeren Einfluss auf die Bruchzähigkeit ausübt, als die Größe der Karbide und Karbidcluster.
7 Zusammenfassung

In der vorliegenden Arbeit wurde der kommerziell erhältliche pulvermetallurgisch hergestellte, ledeburitische Schnellarbeitsstahl S290PM der Böhler Edelstahl GmbH & Co KG hinsichtlich der möglichen Auswirkungen verschiedener Pulverfraktionen auf die mechanischen Eigenschaften untersucht. Dazu wurde das mechanische Verhalten des S290PM, welcher aus 7 verschiedenen Pulverfraktionen (< 56 µm, > 56 µm, > 75 µm, > 125 µm, > 212 µm, > 355 µm und Standardpulver) hergestellt wurde, mit Hilfe von Zugversuchen, Bruchzähigkeitsbestimmungen und Härte-Anlasskurven ermittelt und verglichen. Dabei wurden ausgehend vom Pulver bis hin zum vergüteten Stahl Beziehungen zwischen dem Gefüge und den Eigenschaften hergestellt.

Das durch Verdüsen mit Stickstoff gewonnene Stahlpulver wurde nach dem Aussieben in Pulverfraktionen in Stahlkapseln gefüllt und im HIP-Prozess bei hoher Temperatur und Druck zu einem Festkörper kompaktiert. Diese gehipten Blöcke aus verschiedenen Pulverfraktionen wurden dann durch Schmieden oder in einigen Fällen durch Walzen weiter umgeformt und bildeten das Ausgangsmaterial für die Probenfertigung.

In der vorliegenden Arbeit konnte gezeigt werden, dass die Karbidstruktur der Pulverteilchen sehr stark vom Teilchendurchmesser und der damit in Zusammenhang stehenden Abkühlrate beeinflusst wird. Sehr grobe Ausgangspulver (z.B. > 355 µm) führen im Vergleich zum Standardpulver oder den deutlich feineren Pulvern (< 56 µm, > 56 µm, > 75 µm), bereits im gehipten Zustand zu signifikant größeren Karbiden. Davon betroffen sind vor allem die M6C Karbide. Die Härte im gehipten Zustand und auch das Härte-Anlassverhalten bleibt dadurch aber unbeeinflusst und ist somit unabhängig von der Pulverfraktion.

Die mechanischen Prüfungen (Zugversuch und Bruchzähigkeit) brachten folgende Ergebnisse: Im Zugversuch wurde ein möglicher Einfluss der Pulverfraktion auf die mechanischen Eigenschaften durch unterschiedlich große Werkstoffdefekte (Poren, nichtmetallische Einschlüsse) überdeckt. Dafür zeigte sich, dass das zur Herstellung des Halbzeug verwendete Umformverfahren (Schmieden und Walzen) einen großen Einfluss auf die Bruchfestigkeit ausübt. Tatsächlich erreichten die Proben der geschmiedeten Pulverklassen durch das Auftreten großer Poren (> 200 µm) eine geringere Bruchfestigkeit als die Proben des gewalzten Stahls, bei denen keine Poren, sondern kleinere nichtmetallische Einschlüsse als bruchauslösende Defekte festgestellt wurden. Da Werkstoffdefekte dieser Größe im S290PM normalerweise
nicht vorkommen, hat sich hier die Unterbrechung des großtechnisch weitgehend abgeschlossenen Herstellprozesses durch das Aussieben des Pulvers negativ auf das Endprodukt ausgewirkt.

Die Bruchzähigkeitsprüfung brachte das Ergebnis, dass die Bruchzähigkeit weitgehend von der Pulverfraktion unabhängig ist. Die Unterschiede in der gemessenen Bruchzähigkeit (maximal 0.7 MPa m$^{1/2}$) sind zu gering, um einen Trend in der Veränderung der Bruchzähigkeit mit der Pulverfraktion angeben zu können. Über einen bruchmechanischen Ansatz wurde gefunden, dass die Größe der plastischen Zone vor der Rissspitze in der Größenordnung der Karbidabstände liegt und daher die Größe der Karbide und Karbidcluster keinen nennenswerten Einfluss auf die Bruchzähigkeit ausüben.

In dieser Arbeit konnte gezeigt werden, dass die mechanischen Eigenschaften, im konkreten Fall des S290PM, weniger durch feineres Pulver, sondern viel mehr durch eine konsequente Verringerung und Verkleinerung der Werkstoffinhomogenitäten (Poren, nichtmetallische Einschlüsse usw.) im Endprodukt optimiert werden. Erst wenn es gelingt, die Abmessungen aller Fehlstellen im Stahl in die Größenordnung der Karbide zu bringen, wird es möglich sein über eine feinere Verteilung kleinerer Karbide eine Erhöhung der Zähigkeit zu erzielen.
8 Literaturverzeichnis

