MONTANUNIVERSITÄT LEOBEN

Department Umwelt- und Energieverfahrenstechnik
Lehrstuhl für Thermoprozesstechnik

Energetische Betrachtung einer Versuchsanlage zur trockenen Granulation von Hochofenschlacke

Masterarbeit
zur Erlangung des akademischen Grades
Diplom-Ingenieur
an der Montanuniversität Leoben

vorgelegt von Klaus Doschek, BSc
Leoben, November 2013

Betreuer

Univ.-Prof. Dipl.-Ing. Dr.techn. Harald Raupenstrauch
Dipl.-Ing. Markus Koffer
Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich diese Arbeit selbstständig verfasst, andere als angegebene Quellen und Hilfsmittel nicht benutzt und mich aus sonst keiner unerlaubten Hilfsmittel bedient habe.

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

Leoben, November 2013
Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die durch ihre fachliche und persönliche Unterstützung zum Gelingen dieser Arbeit beigetragen haben.

Mein herzlicher Dank gilt Herrn Prof. Dr. Harald Raupenstrauch für die Möglichkeit diese Masterarbeit zu verfassen. Ebenso danke ich Herrn DI Markus Kofler für die hervorragende Betreuung und gute Zusammenarbeit.

Außerdem möchte ich mich bei Frau DI Andrea Werner, stellvertretend für den Projektpartner Siemens VAI, bedanken.

Mehr als nur Dankbarkeit schulde ich meiner gesamten Familie, insbesondere meinen Eltern, die mich immer in allen Belangen ermutigt und unterstützt haben.
Kurzfassung


Aus diesem Grund wurde seitens der Siemens VAI eine Versuchsanlage zur trockenen Granulation von Hochofenschlacke zu Forschungszwecken am Lehrstuhl für Thermoprozesstechnik an der Montanuniversität Leoben errichtet.

Im ersten Teil dieser Arbeit werden im Rahmen einer Literaturrecherche Grundlegendes zur Hochofenschlacke, die Entwicklung der trockenen Granulationsverfahren und die direkten Konkurrenzverfahren abgehandelt. Der zweite Teil widmet sich der Messdatenauswertung der drei durchgeführten Versuchskampagnen. Spezieller Fokus liegt dabei auf der Energiebilanz der Einzelversuche und dem daraus resultierenden Wirkungsgrad.
Abstract

In integrated iron and steel mills molten blast furnace slag is produced as a by-product with around 1500 °C. According to the state of the art this slag is cooled down with water in wet granulation plants. This process produces granulated blast furnace slag with latent hydraulic properties used in the cement and construction material industry. However, the method discussed causes an energy content loss of 1.5 GJ/t with regard to the blast furnace slag. This represents a large unexploited energy resource of the iron and steel industry. The dry slag granulation, based on the Rotating-Cup Atomizer, is an appropriate method to retrieve this energy. Simultaneously it is also possible to produce high quality granulated blast furnace slag.

In order to meet this gap in knowledge, Siemens VAI in cooperation with the chair of Thermal Processing Technology for Research and Development at the University of Leoben decided to establish a new testing plant.

The first part of this thesis comprises information about fundamentals of blast furnace slag, the development of dry granulation and the competing processes. The second part deals with the energy balance of the individual trials and the resulting thermal efficiency.
Inhaltsverzeichnis

1. Einleitung ......... 1

2. Aktuelle Energiesituation in der Eisen- und Stahlindustrie ......... 4

3. Grundlegendes zu Hochofenschlacke .......... 8
   3.1. Eigenschaften von Hochofenschlacke ................. 10
   3.2. Verwendung von Hochofenschlacken ................. 15
   3.3. Energieinhalt von Hochofenschlacke ................. 19
   3.4. Energierückgewinnung aus Hochtemperaturenschlacken ................. 21
      3.4.1. Mechanische Granulationsmethoden ................. 22
      3.4.2. Druckluft Granulationsmethoden ................. 26
      3.4.3. Zentrifugag Granulationsmethoden ................. 27

4. Aktuelle Konkurrenzverfahren und Forschungsgruppen .......... 32
   4.1. Paul Wurth (PW) ................. 32
   4.2. Central Iron and Steel Research Institute China (CISRI) ................. 36
   4.3. Australia's Commonwealth Scientific Industrial Research Organisation (CSIRO) ................. 40
   4.4. Siemens VAI (SVAI) ................. 44

5. Beschreibung der Versuchsanlage .......... 48

6. Praktische Durchführung .......... 53
   6.1. Bilanzgrenze der energetischen Betrachtung ................. 53
   6.2. Ermittlung der relevanten Größen ................. 56
   6.3. Datenaufbereitung und Auswertung ................. 61
   6.4. Ergebnisse und Diskussion ................. 64

7. Zusammenfassung .......... 67

8. Ausblick .......... 69

Nomenklatur .......... 71

Literaturverzeichnis .......... 73

Abbildungsverzeichnis .......... 78

Tabellenverzeichnis .......... 81

A. Messroutine HTA-Messung .......... 1

B. Rohrleitungs- und Instrumentenfließbild Technikumsanlage .......... IV
C. Datenzusammenfassung zur Berechnung des Wirkungsgrades
1. Einleitung


Auf Basis von bereits durchgeführten Vorversuchen zur trockenen Granulation von Hochofenschlacke nach dem Rotating-Cup Verfahren wurde zur Forschungszwecken im Auftrag von Siemens VAI eine Versuchsanlage im Technikum des Lehrstuhls für Thermoprozesstechnik an der Montanuniversität Leoben errichtet.

Zusammenfassend ergeben sich aus der Anwendung der trockenen Schlackengranulierung für Hüttenwerke folgende Vorteile:

- Sinnvolle Nutzung der in der Schlacke enthaltenen Wärmeenergie
- Wegfall der Wasserwirtschaft und somit keine Wasserverschmutzung
- Erzeugung von Hüttenpulver
- Trocknungsprozess für die granulierte Schlacke entfällt
Problemstellung

Schmelzflüssige Hochofenschlacke wird in Europa zum Großteil in nassen Granulationsanlagen mit Wasser rasch abgekühlt. Dabei entsteht der sogenannte glasige Hüttenbrand, der in der Zement- und Baustoffindustrie aufgrund seiner latent hydraulischen Eigenschaften eingesetzt werden kann. Abseits der etablierten stofflichen Verwertung weist die nasse Granulation folgende Problematik beziehungsweise Verbesserungspotentiale auf [2]:

- Energieverlust
- Wasserverbrauch & -aufbereitung
- Emissionen
- Zusatzenergie

Der größte Nachteil ergibt sich aus der ungenutzten Schlackenenergie von rund 1,5 GJ/t durch die Entstehung von Niedertemperaturdampf. Daraus ergibt sich ein Wasserverlust bei älteren offenen Anlagen von circa 1,0 – 1,2 Tonnen pro Tonne granulierter Hochofenschlacke. Gleichzeitig kann es aufgrund von Reaktionen zwischen Wasser und Schlacke zur Bildung von gasförmigen Schwefeldioxid SO₂, Schwefelwasserstoff H₂S und anderen Sulfatverbindungen kommen. Als letzter Punkt ist die energieintensive Trocknung des Hüttenbrandes zu nennen, bevor er weiter verarbeitet werden kann.


Anhand der generierten Messdaten der am Lehrstuhl für Thermoprozesstechnik installierten Anlage zur trockenen Granulation gilt es eine Versuchsbeurteilung nach folgenden Kriterien durchzuführen:

- Glasgehalt > 90%; rasche Abkühlrate unter Transformationstemperatur 900°C führt zur Ausbildung amorpher Strukturen
- Granulationsrate > 85%, Verhältnis von granulierter zu eingesetzter Schlackenmenge

Erfüllt ein Einzelversuch die oben genannten Kriterien, wird eine energetische Betrachtung durchgeführt und der Wirkungsgrad der Wärmeübertragung von Schlacke und Luft berechnet.

Aufgabenstellung und Zielsetzung

Zu Beginn der Arbeit soll ein allgemeiner Überblick über die aktuelle Energiesituation in der Eisen- und Stahlindustrie mit besonderem Fokus auf Effizienzsteigerung und Einsparungspotentiale gegeben werden. Im Bereich der Hochofenschlacke werden grundlegende Eigenschaften, die aktuelle Verwendung und die Entwicklung der Energierückgewinnung näher behandelt. Um den Entwicklungsstand der Energierückgewinnungsverfahren zu erfassen, werden die aktuellen Konkurrenzverfahren und Forschungsgruppen näher beschrieben.
Anhand der Versuchsanlage am Lehrstuhl für Thermoprozesstechnik wird die Entwicklung der trockenen Granulation nach dem Rotating-Cup Verfahren näher erläutert. Anschließend werden die Voraussetzungen für die energetische Betrachtung der Einzelversuche geschaffen, indem die Systemgrenzen und die Messdatenerfassung festgelegt werden.

2. Aktuelle Energiesituation in der Eisen- und Stahlindustrie

Die Eisen- und Stahlindustrie ist eine der wichtigsten Säulen der Wirtschaft und gleichzeitig eine der energieintensivsten Sparten, mit einem ungefähren Anteil von 4-5 % des weltweiten Energieverbrauches. Gleichzeitig, besitzt sie auch noch ein erhebliches Energieeinsparungspotential, zum Beispiel im Produktionsbereich. [2, 3]

Allgemein kann festgehalten werden, dass die Primärmetallproduktion einen signifikanten Einfluss auf die Umwelt besitzt. Aus der Abbildung 2.1 können die Treibhausgasemissionen in CO₂-Äquivalenten der Metallindustrie für 2010 entnommen werden. In diesem Zusammenhang kann durch die stoffliche Verwertung der Hochfenslacke und der Wärmerückgewinnung beim Granulationsprozess der Gesamtanteil der Eisen- und Stahlindustrie erheblich nach unten korrigiert werden. [2, 3]

Abbildung 2.1.: Globale Treibhausgasemissionen nach CO₂-Äquivalenten in der Primärmetallproduktion für 2010 [3]


Bei einer effizienteren Prozessgestaltung können im optimalen Fall die Kosten und Umweltbelastung gesenkt werden. In der folgenden Tabelle 2.1 wird der aktuelle Stand der Energierückgewinnung am Beispiel der Prozessabluftnutzung in chinesischen Hüttenwerken näher erläutert. Dabei zeigt sich, dass noch ein erhebliches Verbesserungspotential in den einzelnen Prozessbereichen vorhanden ist. [4, 7]
Tabelle 2.1.: Aktueller Stand der Energierückgewinnung aus der Prozessabluft von Hüttenwerken in China für 2011 nach [8]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokerei</td>
<td>0,93</td>
<td>0,08</td>
<td>8,2</td>
</tr>
<tr>
<td>Sinterei/Pelletierung</td>
<td>1,56</td>
<td>0,28</td>
<td>18,0</td>
</tr>
<tr>
<td>Hochofen</td>
<td>8,0</td>
<td>4,62</td>
<td>57,8</td>
</tr>
<tr>
<td>Stahlerzeugung</td>
<td>1,81</td>
<td>0,81</td>
<td>44,8</td>
</tr>
<tr>
<td>Walzen</td>
<td>1,01</td>
<td>0,28</td>
<td>27,2</td>
</tr>
</tbody>
</table>

Um eine bessere Bewertung von Abwärme durchführen zu können, empfiehlt es sich diese nicht nur nach Quantität sondern auch nach Qualität zu bewerten. Eine mögliche Einteilung kann dabei in drei Temperaturbereiche erfolgen [8]:

- Minderwertig: kleiner 150 °C; Abdampf, Heißwasser
- Mittelwertig: 150–500 °C; Gichtgas, Kokereigas
- Hochwertig: größer 500 °C; Hochofenschlacke, Stahlwerksschlacke, Konvertergas

Auf Basis von statistischen Daten wird in Tabelle 2.2 die aktuelle Situation in China im Bereich der Energierückgewinnungsraten nach den oben genannten Temperaturbereichen dargestellt. Die Werte beziehen sich dabei auf die Produktion von einer Tonne Stahl. [8]

Tabelle 2.2.: Aktueller Stand der Energierückgewinnung von drei verschiedenen Qualitäten von Abwärme nach Temperaturbereiche in der Eisen- und Stahlindustrie in China für 2011 nach [8]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minderwertig</td>
<td>2,89</td>
<td>0,22</td>
<td>1,59</td>
</tr>
<tr>
<td>Mittelwertig</td>
<td>2,19</td>
<td>0,66</td>
<td>30,2</td>
</tr>
<tr>
<td>Hochwertig</td>
<td>3,36</td>
<td>1,49</td>
<td>44,4</td>
</tr>
</tbody>
</table>

Die Abbildung 2.4 zeigt die Verteilung der ungenutzten Energiereserven nach den oben erwähnten Temperaturbereichen in China.

Abbildung 2.4.: Ungenutzte Energiereserven nach Aufteilung in drei Temperaturbereiche der Eisen- und Stahlindustrie am Beispiel Chinas nach [8]
Zusammenfassend bietet Hochofenschlacke aufgrund der hohen Produktionsrate von 275 kg Schlacke pro Tonne Roheisen und den hohen Abstichtemperaturen von 1450 - 1500 °C einen wichtigen Ansatzpunkt zur weiteren Energieeffizienzsteigerung.

3. Grundlegendes zu Hochofenschlacke

In diesem Kapitel werden die grundlegenden Eigenschaften von Hochofenschlacke, der Anfall in integrierten Hüttenwerken und dessen Verwendung behandelt.

Der Begriff „Schlacke“ stammt aus der Metallurgie und bezeichnet jene nichtmetallischen und mineralischen Phasen, die sich bei der Metallherstellung bilden. Die Hochofenschlacke im Speziellen bildet sich aus der Gangart, den Zuschlägen und den geschmolzenen Koksbestandteilen bei 1450 °C bis 1600 °C. Sie übernimmt dabei folgende metallurgischen Aufgaben [9, 10]:

- nichtmetallische Erzbegleithasen und Kokseschen aufnehmen
- Roheisen entschwefeln
- niedrigen Schmelzpunkt aufweisen
- leichte Abtrennbarkeit, Dünnflüssigkeit


Hochofenschlacke entsteht wie bereits erwähnt beim sogenannten Hochofenprozess aus dem Nebengestein (Gangart), nicht brennbaren Bestandteilen der Reduktions- und Brennstoffe (Koks) und den Zuschlagstoffen (Kalkstein, Dolomit, Bauxit, u.a.). Die Zuschlagstoffe dienen der Schlackenbildung und heben die Basizität, siehe Tabelle 3.1, der Hochofenschlacke, wodurch die Entschwefelungsreaktion ermöglicht wird.
Die Hauptbestandteile der Schlacke nach dem Abstich sind die folgenden Hauptbestandteile CaO, SiO$_2$, Al$_2$O$_3$ und MgO. In Summe nehmen sie einen Massenprozentanteil von größer 95% ein. Die Tabelle 3.1 zeigt die typische Zusammensetzung von Hochofenschlacke. [11, 13]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Richtwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>[M.-%]</td>
<td>33-40</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>[M.-%]</td>
<td>8-14</td>
</tr>
<tr>
<td>CaO</td>
<td>[M.-%]</td>
<td>31-42</td>
</tr>
<tr>
<td>MgO</td>
<td>[M.-%]</td>
<td>7-15</td>
</tr>
<tr>
<td>Fe$\text{gesamt}$</td>
<td>[M.-%]</td>
<td>0,2-0,7</td>
</tr>
<tr>
<td>Mn$\text{gesamt}$</td>
<td>[M.-%]</td>
<td>0,2-0,8</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>[M.-%]</td>
<td>0,3-1,2</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>[M.-%]</td>
<td>0,3-1,2</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>[M.-%]</td>
<td>0,6-1,2</td>
</tr>
<tr>
<td>S$\text{gesamt}$</td>
<td>[M.-%]</td>
<td>0,7-1,6</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>[M.-%]</td>
<td>0,1-2,7</td>
</tr>
<tr>
<td>$B_1$[CaO/SiO$_2$]</td>
<td>[-]</td>
<td>0,8-1,2</td>
</tr>
<tr>
<td>$B_2$[(CaO+MgO)/SiO$_2$]</td>
<td>[-]</td>
<td>1,0-1,3</td>
</tr>
</tbody>
</table>


Bei der Nutzung von schmelzflüssiger Hochofenschlacke zur Energierückgewinnung gibt es einige schlackenspezifische Eigenschaften zu beachten. Folglich wird auf diese näher eingegangen.
3.1. Eigenschaften von Hochofenschlacke


Basizität


$$B_1 = \frac{CaO}{SiO_2} = \frac{C}{S}$$  \hspace{1cm} (3.1)

$$B_2 = \frac{CaO + MgO}{SiO_2} = \frac{(C + M)}{S}$$  \hspace{1cm} (3.2)

$$B_3 = \frac{CaO + MgO}{SiO_2 + Al_2O_3} = \frac{(C + M)}{(S + A)}$$  \hspace{1cm} (3.3)

Im Allgemeinen werden die Schlacken je nach Reaktionsverhalten in basische und saure Schläcken eingeteilt. Basische Schlacken haben eine Basizität > 1,2 und weisen daher einen Überschuss an basischen Oxiden auf (CaO, MgO, MnO, ...). Im Gegensatz dazu haben saure Schlacken eine Basizität kleiner 1,0 und beinhalten daher mehr basische Oxide (SiO$_2$, P$_2$O$_5$, ...). Die Schlacke an sich strebt eine neutrale Basizität 1,1 an und reagiert daher mit basischen beziehungsweise sauren Oxiden. [18]
Der Einfluss der Basizität auf die Schackeneigenschaften und die daraus folgende Granulation kann der Tabelle 3.2 entnommen werden. [15, 19]

Tabelle 3.2.: Einfluss der Basizität auf die Eigenschaften von Hochofenschlacke nach [15, 19]

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Basizität hoch</th>
<th>Basizität niedrig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entschwefelung</td>
<td>wird begünstigt</td>
<td>wird herabgesetzt</td>
</tr>
<tr>
<td>Entphosphorung</td>
<td>wird begünstigt</td>
<td>wird herabgesetzt</td>
</tr>
<tr>
<td>Oberflächenspannung</td>
<td>Erhöhung</td>
<td>Erniedrigung</td>
</tr>
<tr>
<td>Grenzflächenspannung</td>
<td>Erhöhung</td>
<td>Erniedrigung</td>
</tr>
<tr>
<td>Viskosität</td>
<td>Erniedrigung</td>
<td>Erhöhung</td>
</tr>
<tr>
<td>Schmelzpunkt</td>
<td>Erhöhung</td>
<td>Erniedrigung</td>
</tr>
<tr>
<td>spezifische Wärmekapazität</td>
<td>Erniedrigung</td>
<td>Erhöhung</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit</td>
<td>Erniedrigung</td>
<td>Erhöhung</td>
</tr>
<tr>
<td>Glasgehalt bei Granulation</td>
<td>Erniedrigung</td>
<td>Erhöhung</td>
</tr>
</tbody>
</table>

**Temperatur**

Die Temperatur der schmelzflüssigen Hochofenschlacke ist ein wichtiger Einflussfaktor, denn die oben genannten Eigenschaften hängen direkt von dieser ab. Schon eine Temperaturänderung um zehn Grad kann zu wesentlichen Änderungen der Granulationsbedingungen führen. Beim Hochofenprozess fällt die Schlacke normalerweise mit der annähernd gleichen Temperatur im Bereich von 1450-1600°C an.

Die chemische Zusammensetzung und die Temperatur der schmelzflüssigen Hochofenschlacke haben großen Einfluss auf folgende Eigenschaften:

- Oberflächenspannung $\Phi$ [mN/m]
- Viskosität $\eta$ [Pa*s]
- Wärmeleitfähigkeit $\lambda$ [W/m*K]

In Folge wird der Zusammenhang der Parameter näher erläutert. Dabei wird grundsätzlich in drei Klassen von Hochofenschlacke nach ihrer Basizität unterschieden [20]:

- HOS Typ A: „sauer“ $B_1 \ [C/S] < 1,0$
- HOS Typ B: „mittel“ $B_1 \ [C/S] = 1,1$
- HOS Typ C: „basisch“ $B_1 \ [C/S] > 1,2$

**Oberflächenspannung**

In dem für den Abstich typischen Temperaturbereich von 1450°C bis 1600°C ist die Oberflächenspannung hauptsächlich von der Basizität abhängig. Bei gleichbleibender Temperatur und erhöhter Basizität (CaO- beziehungsweise MgO-Gehalt) steigt die Oberflächenspannung. Aus der folgenden Abbildung 3.2 können die Abhängigkeiten der Basizität und der Temperatur in Bezug auf die Oberflächenspannung abgelesen werden. [13, 17]
Abbildung 3.2.: Temperaturabhängigkeit der Oberflächenspannung von Hochofenschlacke nach [20]


Zusammenfassend kann die Auswirkung der Schlackentemperatur auf die Oberflächenspannung und die daraus folgende Partikelform an folgenden Punkten festgemacht werden [13]:

- Niedrige Schlackentemperatur\(^1\) → hohe Oberflächenspannung → keine Zerteilung möglich
- Mittlere Schlackentemperatur\(^1\) → mittlere Oberflächenspannung → Kugelform
- Hohe Schlackentemperatur\(^1\) → niedrige Oberflächenspannung → längliche Form

**Viskosität**


\(^1\)Der Einfluss ist auch von der chemischen Zusammensetzung abhängig, somit kann keine Temperatur angegeben werden
Abbildung 3.3.: Temperaturabhängigkeit der Viskosität von Hochofenschlacke nach [20]

Aus der vorherigen Abbildung lässt sich der stetige Anstieg der Viskosität bei abnehmender Temperatur erkennen. Eine flache Viskositätskurve ist charakteristisch für Schlaken, die sogenannten „langen Gläsern“ entsprechen. Diese bilden bei einer scherenden Beanspruchung und kalter Umgebung Fasern aus. Im typischen Abstichtemperaturbereich hat die Hochofenschlacke eine Viskosität zwischen 0,6 Pa•s bei 1450 °C und 0,3 Pa•s bei 1600 °C. Diese Viskosität kann mit jener von Transformatorenöl bei Raumtemperatur verglichen werden. [13]

Für die bisherige nasse Granulation hat sich gezeigt, dass sich Hochofenschlacken in einem Bereich zwischen 0,3 Pa•s und 0,5 Pa•s optimal für die Produktion von qualitativem Hüttensand eignen. Bei einer zu zähflüssigen Schlacke ($\eta > 0,5$ Pa•s) verringert sich der Glasgehalt, ist sie zu niedrig ($\eta < 0,3$ Pa•s), kann es zur unerwünschten Faden- bzw. Wollebildung kommen. In der folgenden Tabelle 3.3 werden Viskositäten verschiedener Stoffe aufgelistet. [13]

Tabelle 3.3.: Vergleich der Viskosität von verschiedenen Stoffen [13]

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Viskosität $\eta$ [Pa•s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen 50/70 (75 °C)</td>
<td>100</td>
</tr>
<tr>
<td>Kalk-Natron-Glas (1400 °C)</td>
<td>10</td>
</tr>
<tr>
<td>Transformatorenöl (20 °C)</td>
<td>1</td>
</tr>
<tr>
<td>HOS Abstich (1450-1600 °C)</td>
<td>0,1 - 0,8</td>
</tr>
<tr>
<td>LD-Schlacke Abstich (1650 °C)</td>
<td>0,01 - 0,2</td>
</tr>
<tr>
<td>Roheisen (1400 °C)</td>
<td>0,001 - 0,002</td>
</tr>
<tr>
<td>Wasser (20 °C)</td>
<td>0,001</td>
</tr>
</tbody>
</table>
Zusammenfassend ist die Viskosität der flüssigen Schlacke gleichermaßen von ihrer Temperatur und chemischen Zusammensetzung (Basizität) abhängig. Die chemische Zusammensetzung nimmt besonderen Einfluss, wenn es um die Faden- bzw. Wollebildung durch die Netzwerkbildner SiO₂ und Al₂O₃ geht. [13]

**Wärmeleitfähigkeit**


Bei der Betrachtung der Abbildung 3.4 fällt auf, dass bei hohen Temperaturen die Wärmeleitfähigkeit rapide abnimmt. Daher besitzt Hochofenschlacke beim Abstich nur eine geringe Wärmeleitfähigkeit von 0,1 bis 0,9 W/mK. [13, 21]

Abbildung 3.4.: Temperaturabhängigkeit der Wärmeleitfähigkeit von Hochofenschlacke nach [20]

Aufgrund des niedrigen Wärmeleitfähigkeitswertes kommt es bei der Nachbehandlung von Hochofenschlacke zur Deckelbildung bei Kontakt mit Luft und anderen Materialien. Dies gründet auf dem Umstand, dass Wärme nur sehr schlecht an die Oberfläche transportiert wird, beziehungsweise der Wärmetransport innerhalb der Schlacke nur sehr langsam vorstatten geht. Dies erschwert das Schluckenhandling und beeinflusst auch die Energierückgewinnung. [13, 21]

Zusammenfassend ergeben sich folgende wesentliche Eigenschaften von Hochofenschlacke [22]:

- Oberflächenspannung ist gering
- Viskosität nimmt mit fallender Temperatur stark zu
- Wärmeleitfähigkeit ist gering
3.2. Verwendung von Hochofenschlacken

In Abhängigkeit vom Abkühlvorgang lässt sich die Hochofenschlacke in den verschiedensten Bereichen stofflich verwerken. Die Produkte werden zum Beispiel in der Zementindustrie als Klinkersubstitut, im Fertigbeton, im Straßenbelag, als Tragschicht im Straßenbau und als Bergversatz eingesetzt. Mit Hilfe der Abkühlbedingungen und den verschiedensten Verfahren können die Eigenschaften der Schlacke für den jeweiligen Bedarfsfall optimal angepasst werden. Daher ist es wichtig für die Verfahrensentwicklung, die Qualitätsmerkmale der bereits etablierten Produkte zu erreichen, um die bestehenden Absatzmärkte zu bedienen.\[2,11,23\]

In der folgenden Abbildung 3.5 werden mögliche Hochofenschlackenprodukte und deren Verwendung dargestellt. Dabei sei besonders auf die Kristallstruktur hingewiesen, welche von der Abkühlrate abhängt.\[11\]  

Abbildung 3.5.: Übersicht der Verarbeitungs- und Verwertungsmöglichkeiten von Hochofenschlacke nach\[11\]


In Europa werden hauptsächlich Hüttensand mit circa 80% und Hochofenstückschlacke mit 20% hergestellt. Der wesentliche Herstellungsunterschied wird in folge noch näher erläutert.\[11\]
Hochofenstückschlacke - Schlackenbeete


![Abbildung 3.6.: voestalpine Stahl GmbH in Linz – Schlackenbeete](image1)

Abbildung 3.6.: voestalpine Stahl GmbH in Linz – Schlackenbeete


![Abbildung 3.7.: voestalpine Stahl GmbH in Linz – Aufbereitung Hochofenstückschlacke](image2)

Abbildung 3.7.: voestalpine Stahl GmbH in Linz – Aufbereitung Hochofenstückschlacke
In der Abbildung 3.8 sind exemplarisch zwei Endprodukte, Gleisschotter und Streusplitt, abgebildet. Dabei ist deutlich die unterschiedliche Korngröße erkennbar. [14]

![Gleisschotter 0/63 mm](image1.png) ![Streusplitt 0/32 mm](image2.png)

Abbildung 3.8.: voestalpine Stahl GmbH in Linz – Hochofenstückschlacke

**Hüttensand - Nassgranulation**


![Spritzkopf vor der Granulation](image3.png) ![Spritzkopf beim Granulieren](image4.png)

Abbildung 3.9.: Nassgranulation von Hochofenschlacke zu Hüttensand [25]

Aufgrund seiner guten latent-hydraulischen Eigenschaften und einer ähnlichen Zusammensetzung wie Portlandzementklinker, wird Hüttensand für die Herstellung von Bindemitteln herangezogen. Dabei müssen Grenzwerte nach DIN EN 15167-1 für Hüttensandmehl eingehalten werden, vergleiche Tabelle 3.4. [24]
3. GRUNDLEGENDES ZU HOCHOFENSCHLACKE

Tabelle 3.4.: Grenzwerte von Hüttdünsand für den Einsatz in der Zementindustrie

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>Grenzwert DIN EN 15167-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesiumoxid</td>
<td>[% M.]</td>
<td>≤ 18</td>
</tr>
<tr>
<td>Sulfid</td>
<td>[% M.]</td>
<td>≤ 2,0</td>
</tr>
<tr>
<td>Sulfat</td>
<td>[% M.]</td>
<td>≤ 2,5</td>
</tr>
<tr>
<td>Chlorid</td>
<td>[% M.]</td>
<td>≤ 0,10</td>
</tr>
<tr>
<td>Glühverlust</td>
<td>[% M.]</td>
<td>≤ 3,0</td>
</tr>
<tr>
<td>Glasgehalt</td>
<td>[-]</td>
<td>≥ 2/3</td>
</tr>
<tr>
<td>$B_1 [C/S]$</td>
<td>[-]</td>
<td>≥ 2/3</td>
</tr>
<tr>
<td>$B_2 [(C+M)/S]$</td>
<td>[-]</td>
<td>&gt; 1,0</td>
</tr>
</tbody>
</table>

Beim Einsatz in der Bindemittelindustrie können Hüttdünsandgehalte von bis zu 35% für Portlandzemente und 36% bis 95% für Hochofenbinder vorkommen. Bei der Anwendung von Hüttdünsand in der Zementindustrie können erhebliche Energiemengen und CO$_2$-Emissionen im Vergleich zum herkömmlichen Herstellungsprozess eingespart werden, ungefähr eine Tonne CO$_2$ pro Tonne Zement. [11]

In der folgenden Abbildung 3.10 ist Hüttdünsand der voestalpine Stahl GmbH Linz beispielhaft abgebildet. [2, 24]

(a) Hüttdünsand (b) Hüttdünsand Haldenlagerung

Abbildung 3.10.: voestalpine Stahl GmbH Linz – Hüttdünsand

Obwohl die nasse Granulation eine sehr effektive und robeste Methode zur Behandlung von Hochofenschlacke darstellt, um die geforderten Qualitätskriterien der Zement- und Baustoffindustrie zu erreichen, ist es möglich, die thermische Energie der Schlacke nutzbar zu machen. Im Gegenzug werden pro Tonne Schlacke noch ungefähr 10 Tonnen Wasser, wovon etwa 1-1,5 Tonnen verdampfen, gebraucht. Die Löslichkeit von Alkali- und die Freisetzung von Schwefelwasserstoff stellen weitere Umweltproblematiken der nassen Granulation dar. [7, 11, 17]

- Wasserverbrauch: Für die Granulation werden große Mengen an Wasser benötigt. Der Verbrauch bewegt sich in einem Bereich von 1,0–1,2 Tonnen Wasser pro Tonne Schlacke. [26]

- Energieverlust: Die in der Schlacke beinhaltete Energie von rund 1,5 GJ/t geht durch die Entstehung von großen Mengen an Niedertemperaturdampf verloren.

- Emissionen: Bei der Reaktion von Schlacke und Wasser können Schwefeldioxid SO₂, Schwefelwasserstoff H₂S und andere Sulfatverbindungen entstehen.

- Zusatzenergie: Für die Trocknung des Granulates werden rund 132 kWh/t verbraucht.

Dem gegenüber bietet die trockene Granulation ebenso die Möglichkeit ein glasiges Produkt herzustellen, bei der gleichzeitigen Nutzung des Energieinhaltes in Form von Heißgas, Dampf oder chemischer Energie. Aus diesem Grund hat sich die Forschung nach einem geeigneten Verfahren zur Energierückgewinnung aus schmelzflüssiger Schlacke auf die trockene Granulation verlagert. Das Ziel ist es, ein Verfahren zu entwickeln, das die stoßliche Verwertung von Hochofenschlacke und Wärmerückgewinnung aus dem Granulationsprozess ermöglicht. [7, 27]


### 3.3. Energieinhalt von Hochofenschlacke


Der berechnete Energieinhalt repräsentiert die thermische Energie der Schlacke, die von der Abtrennung bis zum Erreichen der Umgebungstemperatur von 25 °C freigesetzt werden kann. Dies ist der Maximalwert, wenn die Schlacke langsam und kristallin erstarrt. [7]


Der Energieinhalt von Hochofenschlacke wird in der Abbildung 3.12 noch einmal in Abhängigkeit von der Abstich- und Endtemperatur dargestellt. [14, 28]

Abbildung 3.12.: Wärmeenergie von Hochofenschlacke nach [14]

Wie bereits vorher erwähnt zielt die Verarbeitung der flüssigen Hochofenschlacke auf die Herstellung eines Granulates, das einen Glasgehalt größer 95% aufweist. Bei der Ausbildung dieser amorphen Phasen werden circa 17% des Energieinhaltes der Schlacke für die Phasenumwandlung von kristallin zu amorph benötigt. Diese Energie kann nicht für eine weitere Nutzung zurückgewonnen werden und ist daher als Verlust anzusehen. Der Phasenumgang beziehungsweise die Kristallisationsenthalpie wird in der folgenden Abbildung 3.13 für Hochofenschlacke nochmal explizit in Abhängigkeit von der Temperatur dargestellt. [7]
3.4. Energierückgewinnung aus Hochtemperaturschlacken

Frühere Versuche der Energierückgewinnung aus Hochfenschlacken haben bereits gezeigt, dass es möglich ist, die Energie durch Luft rückzugewinnen, doch bis dato konnte sich noch kein Verfahren zur trockenen Granulation am Markt durchsetzen.

Auf Basis von numerischen Methoden und experimentellen Messungen der Temperaturverteilung innerhalb eines Schlacketropfens hat sich gezeigt, dass sich schon in einem kleinen Tropfen ein großer Temperaturgradient ausbildet. Um dies zu veranschaulichen, wird in der Abbildung 3.14 ein solcher Temperaturverlauf in einem Schlacketropfen dargestellt. [7, 30]
In der vorhergehenden Abbildung zeigt sich, dass der Temperaturunterschied von der Oberfläche bis zum Kern 200 °C betragen kann. Dies ist ein fundamentaler Umstand, den es bei einer effektiven Energierückgewinnung durch eine trockene Granulation zu beachten gilt. [7, 30]


In der Vergangenheit wurde versucht die Energie der Schlacke mit Hilfe von geschmolzenem Salz nutzbar zu machen. Bei diesem Versuch wurde Schlackestrom in eine Salzschmelze gekippt und die Temperaturerhöhung des Bades gemessen. Dabei wurde ein Wirkungsgrad von ungefähr 66 % erreicht, wobei das Produkt vergleichbare Eigenschaften wie Hüttensand aufwies. [7, 32]

Aktuell wird bei der Energierückgewinnung aus Hochfenschlacke versucht die Energie in Form von heißer Luft, Dampf oder chemischer Energie rückzugewinnen. Die Versuchsanlagen am Lehrstuhl für Thermoprozesstechnik zielt auf die Produktion von heißer Abluft. In der Zukunft kann diese Energie auf den verschiedensten Wegen genutzt werden, je nach den lokalen Gegebenheiten beziehungsweise dem Bedarf des Betreibers.


- Mechanische Granulation
- Druckluft-Granulation
- Zentrifugal-Granulation

### 3.4.1. Mechanische Granulationsmethoden

Zu Beginn der Forschung im Bereich der trockenen Granulation von Hochfenschlacke kamen mechanische Granulationsverfahren zum Einsatz. Diese konnten mit den einfachsten Mitteln umgesetzt werden. [27]

**Feststoff/Schlacken Zusammenstoßverfahren**

Wie man aus dem Namen schließen kann, wird der flüssige Schlackestrom durch den Zusammenstoß mit bereits festen Partikeln zerteilt. Dieser Prozessablauf kann der Abbildung 3.15 entnommen werden. Dabei wird der flüssige Schlackestrom mit bereits granulierten, festen

Abbildung 3.15.: Zusammenstoßverfahren zur Granulation von Hochofenschlacke der schwedischen Gruppe Merotec [7]

Rührverfahren

Beim mechanischen Rührprozess wird der flüssige Schlackestrom durch, das Rühren zerkleinert. Die japanische Firma Kawasaki Steel Corporation hat als erste eine Anlage basierend auf dieser Rührtechnik gebaut. Der Granulationsprozess wird in der folgenden Abbildung 3.16 dargestellt. [35, 36]

Abbildung 3.16.: Mechanischer Rührprozess in einem Rührbehälter zur Granulation von Hochofenschlacke der Firma Kawasaki Steel Corporation [35]
Die schmelzflüssige Schlacke wird durch die Bewegung eines Rührwerkes in einem halbkugelförmigen Behälter zerkleinert. Dabei wird die Energie der Schlacke mit Hilfe von Wasserrohren, die an der Behälterwand angebracht sind, abgeleitet. Danach wird die granulierte Schlacke in ein Wirbelbett gekippt, um die restliche Energie zurückzugewinnen. Bei diesem Prozess erreicht man einen Wirkungsgrad von ungefähr 59%. [27]

In einem anderen Rührprozess der Firma Sumitoma Metal wird die flüssige Schlacke mit Hilfe einer rotierenden Schnecke, wie in Abbildung 3.17 abgebildet, zerkleinert. Der Energieaustausch erfolgt über den Mantel und die Schneckenachse, die mit Wasser durchströmten. Die Schlacke wird am Ende mit einer ungefähren Temperatur von 900°C ausgetragen. Daraus resultiert auch der geringe Wirkungsgrad von nur rund 50%. [35, 36, 37, 38]

Abbildung 3.17.: Mechanischer Rührprozess mit einer rotierenden Schnecke zur Granulation von Schlacke der Firma Sumito Metal [37]

Der große Nachteil der beiden beschriebenen Verfahren ist die Herstellung relativ großer Schlackepartikel. Diese sind für die Energierückgewinnung wenig effektiv und können auch stofflich nicht weiter genutzt werden. Daher konnten sich die beiden Verfahren nicht kommerziell durchsetzen. [27]

**Drehtrommelverfahren**

Beim Drehtrommelverfahren wird die mechanische Einwirkung auf den Schlackefilm durch die Rotationsbewegung ausgenutzt. Diese Technik wurde schon in den frühen 1980er Jahren von der Firma Ishikawajima Harima Heavy Industries und Sumitomo Metal angewandt und mündet indem in Abbildung 3.18 dargestellten Drehtrommel-Granulationsprozess. [27, 36]

Abbildung 3.18.: Prozessschema der Drehtrommelgranulation von Hochofenschlacke der Firma Ishikawajima Harima Heavy Industries [36]

Abbildung 3.19.: Prozessschema einer Doppeltrommelgranulation von Hochofenschlacke der Firma Sumitomo Metal [39]

In den letzten Jahren hat die Forschung auf dem Gebiet der mechanischen Zerkleinerung an Bedeutung verloren, mit Ausnahme der Forschungstätigkeit der Firma Paul Wurth. Grundsätzlich kann der Rückgang des Interesses an folgenden Punkten festgemacht werden [27]:


- Die Schlacke wird bei einer relativen hohen Temperatur von 500–900 °C ausgetragen, daraus resultiert der geringe Wirkungsgrad dieser Verfahren.
3.4.2. Druckluft Granulationsmethoden

Die Druckluftmethoden basieren auf der Zuhilfenahme von hohen Luftgeschwindigkeiten beziehungsweise Druckluftströmen zur Granulation. Die meist hohen Luftmengen ermöglichen rasche Abkühlarten bei der Zerteilung des flüssigen Schlackestromes. [27]

In den 1980er Jahren wurde in Japan ein Prototyp in Betrieb genommen, siehe Abbildung 3.20. Dabei wurde die Luft als einziges Medium zur Energierückgewinnung genutzt und direkt in einem Generator verstromt. Die Pilotanlage erreichte bei einem Schlackeneinsatz von 18 t/h eine Abgastemperatur von 450–500 °C. Dies entsprach einem Wirkungsgrad von 48 %, wobei der Glasgehalt mehr als 95 % betrug. Dieser Gehalt ist mit der nassen Granulation vergleichbar, aber aufgrund des komplizierten apparativen Aufbaus und des hohen Energieaufwandes konnte sich das Verfahren nicht durchsetzen. [27, 40]

Abbildung 3.20.: Prozessschema einer japanischen Druckluftgranulation von Hochofenschlacke [40]

Abbildung 3.21.: Prozessschema einer Druckluftgranulation von Hochofenschlacke des Russischen Urals Stahlinstitutes [40]

Zusammenfassend sind die Druckluft Granulationsverfahren im Vergleich zu den mechanischen Verfahren besser zur Energierückgewinnung geeignet. Dies führte dazu, dass solche Anlagen auch einige Zeit, vor allem im asiatischen Raum betrieben wurden. Sie konnten sich aber auf lange Sicht nicht durchsetzen, da diese Granulationsmethoden einen hohen apparativen Aufwand und Energiebedarf besitzen. Desweiteren wird ein gutes Fließverhalten der Schlacke vorausgesetzt, das nicht immer garantiert werden kann. [27]

3.4.3. Zentrifugal Granulationsmethoden

Die Zentrifugal Granulationsmethoden sind jene Verfahren mit dem größten Potential zur stofflichen und energetischen Verwertung von Hochofenschlacke. Dabei kommen der Rotating Cup Atomizer (RCA) und der Spinning Disc Atomizer (SDA) zu Einsatz. Die Versuchsanlage am Lehrstuhl für Thermoprozesstechnik basiert auf dem RCA Verfahren. [27]

Rotating Cup Atomizer (RCA) Verfahren

Bei diesem Granulationsansatz steht ein schnell rotierender Drehteller im Mittelpunkt. Die flüssige Schlacke wird direkt auf diesen aufgebracht und durch die Rotationsbewegung kommt es zur Zerteilung der Schlacke in einzelne Tropfen, die radial nach außen geschleudert werden. Gleichzeitig wird Luft von unten in den Granulatorraum geleitet, um die Partikel abzukühlen. Bei diesem Vorgang entsteht ein feines, glasiges Granulat und heiße Prozessluft, die den Granulator nach obenhin verlässt. [27]
Der erste Prototyp einer solchen Anlage wurde in den frühen 1980er Jahren in Großbritannien gebaut und betrieben, siehe Abbildung 3.22. [27, 29, 34]

Abbildung 3.22.: Rotating Cup Atomizer (RCA) Granulationsverfahren von Hochofenschlacke von Pickerung [34]

Durch den schnell rotierenden Drehteller wird der auftreffende Schlackestrom zerteilt und die einzelnen Partikeln fallen in ein Wirbelbett, in dem sie mit Luft abgekühlt werden. Der Abkühlvorgang erfolgt so rasch, dass die Schlacke amorph erstarrt. In der zweiten Stufe fällt das Granulat in ein weiteres Wirbelbett, worin die restliche Energierückgewinnung stattfindet. Die dabei entstehenden Schlackepartikel haben einen Durchmesser von ungefähr 2 mm und einen Glasgehalt von über 95%. Bei diesen Versuchen wurde ein Wirkungsgrad von 59% erzielt, wobei die Schlackepartikel schon bei einer Temperatur von rund 250 °C entnommen wurden. [27, 41]

Der im vorhergehenden Abschnitt beschriebene Prozess hatte großen Einfluss auf zukünftige Entwicklungen. Als Beispiel kann die in der Abbildung 3.23 dargestellte Versuchsanlage von Mizouchi genannt werden. [27, 42]

Abbildung 3.23.: Versuchsapparatur nach dem RCA Verfahren von Mizouchi [42]
Bei diesem Verfahren wird die schmelzflüssige Schlacke mit Hilfe einer Kombination aus Dreh-
teller und Luftdüsen granuliert. Dabei wurden speziell die Auswirkungen der Dreh-tellerge-
schwindigkeit, Schlackenviskosität und Prozessluftmenge auf die entstehende Partikelgröße un-
tersucht. Daraus lassen sich folgende Erkenntnisse ableiten [27]:

- Eine hohe Drehtellergeschwindigkeit resultiert in einer kleinen Partikelgröße, aufgrund
der starken Zentrifugalkräfte. Wenn sich die Rotationsgeschwindigkeit in einem Bereich
von 10-30 U/s bewegt, ist ein signifikanter Einfluss auf die Partikelgröße in einem Bereich
von 1-6 mm zu beobachten.

- Der Durchmesser der Partikel nahm mit sinkender Schlackenviskosität ab.

- Eine hohe Luftmenge erzeugt feine Schlacepartikel mit geringen Durchmessern und
hohen Glasgehalten. Dies kann durch die große Stoßkraft der Zentrifugalkraft und die
rasche Abkühlrate erklärt werden.

Desweiteren wurde auf der Northeast Universität in China der Einfluss der Dreh tellergeome-
trie und des Dreh tellerdurchmessers auf die Partikelgröße untersucht. Dabei zeigte sich, dass
bei einer größeren Kante am Dreh tellerrand und einer Geschwindigkeiten unter 1000 U/min
im Durchschnitt kleinere Partikel entstehen. Dieser Effekt verliert seine Wirkung, wenn die
Geschwindigkeit auf über 1000 U/min gesteigert wird. Dies wurde dadurch erklärt, dass bei
höheren Geschwindigkeiten der Schlackefilm über den Dreh teller rutscht ohne richtig Kontakt
tzuhaben. Hinsichtlich der Energierückgewinnung wurden Rohre an der Granulatorwand, in-
stalliert um Heißwasser zu produzieren. Der schematische Versuchsaufbau wird in der folgenden
Abbildung 3.23 aufgezeigt. [27, 43]

![Abbildung 3.24: Versuchsapparatur der Northeast Universität (China) nach dem RCA Prinzip mit Energierückgewinnung [43]](image)

**Spinning Disk Atomizer (SDA) Verfahren**

Beim SDA Verfahren wird die schmelzflüssige Schlacke mit Hilfe einer schnell rotierenden
Scheibe granuliert. Der Unterschied zum Rotating Cup Atomizer (RCA) liegt im Wesentlichen
im Aufbau des Granulators. Die Zerteilung der Schlacke erfolgt wie beim RCA aufgrund der
Zentrifugalkräfte, die auf den Schlakestrom wirken. [27]
An der Universität von Hokkaido wurde eine Laboranlage gebaut, um die Partikelbildung im Granulationsprozess zu erforschen. Dazu wurde die Granulation mit Hilfe einer Hochgeschwindigkeitskamera aufgenommen. Der apparative Aufbau kann der folgenden Abbildung 3.25 entnommen werden. [27]

Abbildung 3.25.: Versuchsapparatur der Hokkaido Universität (China) nach dem SDA Prinzip [27]

Mithilfe dieser japanischen Versuchsapparatur, dass die Schlacke zu Beginn des Prozesses auf der Scheibe einen Film ausbildet, der sich anschließend in kleine Fäden aufteilt. Je weiter die Schlacke radial nach außen gelangt, brechen die Fäden auf und es bildet sich Granulat. Mit Versuchsaufbau wurde Granulat mit einer Korngröße von 0,6-0,8 mm erzeugt. Anhand der generierten Messergebnisse wurde eine mathematische Simulation erstellt, um den Zusammenhang zwischen Scheibendurchmesser, Temperatur und Partikelgröße zu klären. Daraus konnte abgeleitet werden, dass der Einfluss der Drehzahlgrenzgeschwindigkeit, Schlackenviskosität und Prozessluftmenge auf die Partikelgröße ähnlich wie beim RCA ist. Somit gibt es keinen wesentlichen Unterschied zwischen den beiden Verfahren. [27]

Eine Gruppe der Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) hat eine Granulation anlage basierend auf dem SDA entwickelt. Ein wesentliches Merkmal dieser Anlage ist die Trennung der Granulation von der Energieückgewinnung. [27] Im ersten Schritt wird die Schlacke mittels einer schnell drehenden Scheibe zerteilt. Dabei werden die Schlacke-Partikel mit einem nach oben gerichteten Luftstrom unter die Transformationstemperatur von 900 °C abgekühlt. Im anschließenden zweiten Prozessschritt werden die Schlacke-Partikel in einem Festbettreaktor mit Luft unter 50 °C abgekühlt. Die erzeugte Heißluft erreicht eine Temperatur von rund 600 °C. CSIRO arbeitet aktuell an der Realisierung einer großtechnischen Versuchsanlage, siehe Kapitel 4.3. [27]

Zusammenfassend

Für stoffliche Verwertung und die Wärmerückgewinnung aus Hochofenschlacke ist die Granulation ein kritischer Prozessschritt. Dieser hat Einfluss auf die Partikeleigenschaften und in weiterer Folge auf den Wirkungsgrad der Energieückgewinnung. Vergleicht man die Zentrifugalg Granulation mit den bisher angewandten Methoden, können der geringe Energieverbrauch

30
sowie der einfache und kompakte Anlagenaufbau hervor gestrichen werden. Es ist auch möglich
die Qualität und Korngröße der Schlagkepartikel anhand der Prozessparameter wie Drehge-
schwindigkeit, Granulatgröße und Prozessluftmenge zu steuern. Darüber hinaus können mit
der Zentrifugalgranulation die verschiedensten Energierrückgewinnungsmethoden bedient wer-
den. Dabei stellen der RCA und SDA die beiden Hauptrichtungen der aktuellen Forschung zur
Energierrückgewinnung aus schmelzflüssiger Schlacke dar. [27]

In der folgenden Tabelle 3.5 werden noch einmal alle vorhergehenden Granulationsverfahren
überblicksartig zusammengefasst. Daraus ist eindeutig ersichtlich, dass die Partikelgröße von
der mechanischen Granulation zur Zentrifugalgranulation deutlich abgenommen hat. Aufgrund
der gesunkenen Partikelgröße kann auch ein höherer Wirkungsgrad und eine bessere Produkt-
qualität erzielt werden. [27]

<table>
<thead>
<tr>
<th>Forschergruppe/Firma Granulation</th>
<th>Partikelgröße [mm]</th>
<th>Wärmetauscher</th>
<th>Wirkungsgrad [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merotec (Schweden)</td>
<td>Feststoff Zusammenstoß</td>
<td>3</td>
<td>Wirbelbett</td>
</tr>
<tr>
<td>Kawasaki steel (Japan)</td>
<td>Mechanischer Rührer</td>
<td>40</td>
<td>Plattentaucher</td>
</tr>
<tr>
<td>Sumitomo metal (Japan)</td>
<td>Mechanischer Rührer</td>
<td>20</td>
<td>Plattentaucher</td>
</tr>
<tr>
<td>Ishikawajima Heavy Industries and Sumitomo Metal (Japan)</td>
<td>Dreh trommel</td>
<td>10</td>
<td>Wirbelbett</td>
</tr>
<tr>
<td>NKK corporation (Japan)</td>
<td>Doppeldreh trommel</td>
<td>–</td>
<td>Plattentaucher</td>
</tr>
<tr>
<td>Six major Japanese steel companies (Japan)</td>
<td>Luftdüsen</td>
<td>–</td>
<td>Wirbelbett</td>
</tr>
<tr>
<td>Pickerung (UK)</td>
<td>Rotating Cup</td>
<td>2</td>
<td>Wirbelbett</td>
</tr>
<tr>
<td>Mizuochi (Japan)</td>
<td>Rotating Cup</td>
<td>2-4</td>
<td>–</td>
</tr>
<tr>
<td>CSIRO (Australien)</td>
<td>Spinning Disc</td>
<td>1-2</td>
<td>Festbett</td>
</tr>
</tbody>
</table>
4. Aktuelle Konkurrenzverfahren und Forschungsgruppen

Der ungenutzte Energieinhalt von flüssiger Hochofenschlacke steht im Fokus einiger Forschungsgruppen wie zum Beispiel Paul Wurth (PW), Central Iron and Steel Research Institute China (CISRI), Australia’s Commonwealth Scientific and Industrial Research (CSIRO) und Siemens VAI (SVAI). Die dabei verwendeten Verfahren basieren auf den verschiedensten Technologien der Energierückgewinnung wie der Rückgewinnung mit Luft, durch Kühlrohre oder durch das Mischen mit anderen Feststoffen. [28]

4.1. Paul Wurth (PW)

Paul Wurth setzt bei der trockenen Granulation als einziges Unternehmen auf ein Verfahren ohne rotierenden Drehteller. Die Granulation basiert dort auf einer Festkörperabkühlung, wobei die flüssige Hochofenschlacke in einen Kübel vergossen und mit Metallkugeln über den ganzen Querschnitt vermischt wird, vergleiche Abbildung 4.1. [44, 45]

![Abbildung 4.1.: Grundprinzip der Festkörperabkühlung der Firma Paul Wurth zur Energierückgewinnung aus schmelzflüssiger Hochofenschlacke [44]](image)

Die Kugeln dienen als Kühlelemente, indem sie eine große Kontaktfläche für den Energieübergang zu Verfügung stellen, und ermöglichen somit das Erreichen der notwendigen Abkühlrate für ein glasiges Erstarren der Hochofenschlacke. In etwa 30 Sekunden stellt sich ein Gleichgewicht bei ungefähr 600 bis 800 °C zwischen der Schlacke und den Metallkugeln ein. Daraus resultiert die Erstarrung der Schlacke unter Ausbildung glasierer Phasen, in denen die Metallkugeln eingeschlossen sind, siehe Abbildung 4.2.[44, 46]
Abbildung 4.2.: Glasig erstarrte Hochofenschlacke vor der anschließenden Aufbereitung nach dem Granulationsverfahren der Firma Paul Wurth [45]


Abbildung 4.3.: Fließbild des Granulationsverfahrens der Firma Paul Wurth nach [44]
Nach den ersten erfolgreichen Vorversuchen baute Paul Wurth 2009 eine Versuchsanlage am Werksgelände der Dillinger Hütte (ROGESA), siehe Abbildung 4.4. [44, 45]

Abbildung 4.4.: Versuchsanlage der Firma Paul Wurth am Werksgeländer der Dillinger Hütte der Firma ROGESA [44]

Bei diesen Tests konnten die Abkühlrate und Behältergeometrie optimiert werden. Am Ende konnten 700 kg Hochofenschlacke in einem einzelnen Behälter behandelt werden, welche in weiterer Folge in der Pilotanlage zum Einsatz kommen sollen. [44]

Insgesamt konnten wertvolle Resultate und Erkenntnisse aus den Versuchen gewonnen werden. Produktseitig wurde ein hoher Glasgehalt erreicht, der mit der nassen Granulation vergleichbar ist. Somit ist auch die erste Grundvoraussetzung für die stoffliche Verwertung der Hochofenschlacke gegeben. Bei näheren Untersuchungen und Vergleichen mit konventionellem Hüttensand durch das FEhS-Institutes lagen die folgenden Parameter ihrer vorgeschriebenen Bereiche [45]:

- Chemische Zusammensetzung
- Glasgehalt
- Korngrößenverteilung
- Verarbeitbarkeit (Wasserbedarf, Abbindezeit, ...) von Schlackezement mit 50 M.-% und 75 M.-% Hochofenschlacke
- Mahlbarkeit und Mahlenergie

Abbildung 4.5.: Modell der Pilotanlage der Firma Paul Wurth mit einer Kapazität von 6 t/min flüssiger Hochofenschlacke [46]

Die allgemeinen Zielvorgaben für dieses Verfahren können in drei Punkte zusammengefasst werden und decken sich in den Grundzügen mit den anderen Konkurrenzverfahren [44]:

- Rasche Abkühlrate, um die glasige Erstarrung der Schlacke zu gewährleisten
- Hohe Energieübertragung aus der Mischung (Schlacke/Metallkugeln)
- Schaffung einer großen Austauschfläche der gebrochenen Mischung

In der Tabelle 4.1 ist die Machbarkeitsstudie des von Paul Wurth entwickelten Verfahrens zur Energierückgewinnung dargestellt. Die Berechnung basiert dabei auf folgenden Daten [44]:

- Schlackenproduktion 680.000 t/a
- Erlöse Schlackenprodukt 20 €/t
- Wasserkosten 0,5 €/m³
- Stromkosten 50 €/MWh
- Erdgaskosten 29 €/MWh

Tabelle 4.1.: Machbarkeitsstudie der Firma Paul Wurth des Granulationsverfahren nach [44]

<table>
<thead>
<tr>
<th></th>
<th>Option A: Stromproduktion</th>
<th>Option B: Heißluft Nutzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>26 Mio. €</td>
<td>22 Mio. €</td>
</tr>
<tr>
<td>Energieproduktion</td>
<td>6 MW_{elektrisch}</td>
<td>22 MW_{thermisch}</td>
</tr>
<tr>
<td>Interner Zinsfuß</td>
<td>46 %</td>
<td>73 %</td>
</tr>
<tr>
<td>Amortisationszeit</td>
<td>4,3 Jahre</td>
<td>3,4 Jahre</td>
</tr>
</tbody>
</table>
Die Hauptvorteile des Paul Wurth Verfahrens im Vergleich zu anderen trockenen Granulationstechnologien sind die [45]:

- Unabhängigkeit vom Schackenmassestrom
- Unabhängigkeit von den physikalischen Schackeneigenschaften

### 4.2. Central Iron and Steel Research Institute China (CISRI)


Aktuell wird eine Versuchsanlage an der Universität von Wuhan betrieben. Mit dieser ist es möglich 5 kg schmelzflüssige Hochofenschlacke zu behandeln, siehe Abbildung 4.6. [47]

![Laboranlage zur trockenen Granulation von Hochofenschlacke](image)

**Abbildung 4.6.:** Laboranlage zur trockenen Granulation von Hochofenschlacke nach dem RCA Verfahren an der Universität von Wuhan

Mit dieser Anlage gilt es den Einfluss folgender Prozessparameter zu verifizieren [47]:

- Drehtellergeschwindigkeit, -material, -geometrie
- Schackenmassestrom
- Abstand Abstichloch zum Drehteller
- Schackenwollenbildung
Um den Einfluss des Drehtellermaterials und der Drehtellergeometrie auf die Granulation zu bestimmen, wurden die verschiedensten Drehteller-Typen bei der Granulation getestet, vergleiche Abbildung 4.7. [47]

(a) Rostfreier Stahl  (b) Hitzebeständiger Stahl  (c) Graphit  (d) SiC-SiN

(e) verschiedenste Drehtellergeometrien der Universität Wuhan

Abbildung 4.7.: Drehtellergeometrien der Laborversuchsanlage der Universität Wuhan [48]

Aus den Untersuchungen konnten folgende Parameter für eine optimale Prozessführung abgeleitet werden [47]:

- Drehtellermaterial: Graphit
- Drehtellergeschwindigkeit: zwischen 1500 und 2300 U/min

Mit diesem Setup konnten Glasgehalte größer 88 % erreicht werden. Je höher die Schlackentemperatur und die Rauheit der Drehtelleroberfläche sind, umso höher ist die Wahrscheinlichkeit der Schlackewollenbildung, vergleiche Abbildung 4.8. [47]
Abbildung 4.8.: Produkte der Laboranlage in Abhängigkeit von der Drehtellergeschwindigkeit der Universität Wuhan nach [48]

Mit Hilfe der generierten Daten wurden mathematische Modelle für die weitere Verfahrensentwicklung erstellt. Basierend auf experimentellen Versuchen und den mathematischen Modellen wurde eine großtechnische Anlage geplant. Das Verfahren wird im folgenden Fließbild dargestellt, siehe Abbildung 4.9. [47]


Abbildung 4.9.: Prozessfließbild zur trockenen Granulation von Hochofenschlacke mit Wärmeverdampfung des CISRI [47]
Bei diesem System wird die flüssige Schlacke zu Beginn zentral auf den Dreheller aufgegeben und dort durch die Zentrifugalkräfte zerteilt. Die Partikeln werden anschließend Richtung Granulatorwand geschleudert und prallen von dort in einen Wirbelschichtwarmetauscher ab. Darin werden diese rasch durch Luft abgekühlt.\[47\]

Der Schlackeneingangsstrom wird mittels eines Schiebersystems am Zwischenbehälter geregelt, um einen kontinuierlichen Zufluss am Dreheller zu gewährleisten. Der Transport von dem Granulationsraum zum Wirbelschichtwarmetauscher wird durch zwei Walzenbrecher realisiert. Dabei werden beide Walzenrollen von innen mit Wasser gekühlt, um die Oberflächentemperatur unter 300 °C zu halten. Um den Prozess besser steuern zu können, sind im Granulationsraum noch zusätzliche Hochgeschwindigkeits-Luftdüsen verbaut, die den Abkühlvorgang der Schlacke unter 750 °C unterstützen. Die finale Ablufttemperatur erreicht ungefähr 700 °C, wobei die Schlacke mit einer Temperatur von kleiner 150 °C dem System entnommen wird.\[47\]

Eine wichtige Erkenntnis aus den bereits durchgeführten Versuchen ist der Einfluss der Prozessluftmenge auf den Glasgehalt und die Abgastemperatur. Dieser Zusammenhang kann der Abbildung 4.10 entnommen werden. Daraus ist die indirekte Proportionalität der Ablufttemperatur zum Glasgehalt in Abhängigkeit der Prozessluftmenge ableitbar.\[47\]

Abbildung 4.10.: Abhängigkeit des Glasgehaltes und der Heißlufttemperatur von dem Prozessluftvolumenstrom bei den Laborversuchen der Universität Wuhan nach\[47\]

Für die weitere Entwicklung wurde auch für dieses Verfahren eine Energiebilanz mit folgenden Angaben angesetzt\[47\]:

- Eingangsergemienehmenge 2,1 GJ (von 1,2 Tonnen Schlacke)
- Ausgangsergemienehmenge 1,6 GJ (Heißlufttemperatur 594 °C)

Daraus errechnet sich ein Wirkungsgrad für die Wärmeübertragung zwischen Schlacke und Luft von circa 77 %. 
4.3. Australia’s Commonwealth Scientific Industrial Research Organisation (CSIRO)


![Versuchsaufbau](image)

Abbildung 4.11.: Versuchsaufbau zur Charakterisierung des Aufprallverhalten eines Schlackentropfens auf einer Testplatte unter verschiedenen Winkeln von CSIRO [14]

Mit Hilfe der aufgenommen Hochgeschwindigkeitsbilder ist es möglich das Verhalten der Schlackentropfen in Abhängigkeit von der Fallhöhe und dem Plattenwinkel beim Auftreffen zu charakterisieren. In der folgenden Abbildungen 4.12 wird die Aufpralleigenschaft und Formbildung eines Schlackentropfen dargestellt. Daraus lässt sich schön der Aufprall und die daraus resultierende Deformation erkennen, die in Abhängigkeit zur Schlackentemperatur, Fallhöhe, Plattenmaterial und Plattenwinkel steht. [49]
Abb. 4.12.: Aufpralleigenschaften und Formbildung eines Schlackentropfen unter folgenden Bedingungen: Edelstahlplatte, Winkel 30°, Temperatur 1500 °C und Fallhöhe 1,7 m [49]


Abbildung 4.13.: Konzeptfließbild zur trockenen Granulation mit Wärmerückgewinnung über ein Festbett der CSIRO [14]
Um das entwickelte Konzept zu bestätigen, wurde eine Versuchsanlage mit einem Durchmesser von 1,2 m und einer Schlackenrate von 10 kg/min gebaut, siehe Abbildung 4.14. Mit Hilfe von CFD Modellierungen wurde versucht die Zerteilung der Schlacke auf der Scheibe, die Tropfenabkühlung und -erstarrung auf Basis der gewonnenen Versuchsdaten zu validieren. Für die Granulation der Hochofenschlacke in einem Temperaturbereich von 1450 - 1500 °C wurde eine 70 mm Scheibe verwendet. Das hergestellte Granulat ist zu 90 % kleiner als 1,5 mm und weist einen hohen Glasgehalt auf. Aufgrund der limitierten flüssigen Schlackenmenge, die zu Verfügung steht könnten mit dieser Anlage nur Abgastemperaturen von 300 °C erreicht werden, obwohl es rechnerisch bis zu 600 °C sein sollten. [14, 51]

Abbildung 4.14.: Versuchsanlage (SDA) mit einem Durchmesser von 1,2 m und einer Schlackenrate von 10 kg/min der CSIRO [51]

Basierend auf den guten Versuchsdaten der 1,2 m Anlage wurde die nächste Ausbaustufe mit 3 m Durchmesser und einer Schlackenrate von 100 kg/min geplant und errichtet, siehe Abbildung 4.15. Mit dieser Anlage werden zur Zeit weiter Optimierungen des Prozesses durchgeführt und auch andere Schlackentypen getestet. [14, 51]

Abbildung 4.15.: Versuchsanlage (SDA) mit einem Durchmesser von 3 m und einer Schlackenrate von 100 kg/min der CSIRO [52]
Für das Verfahrenskonzept wurde auch eine Energiebilanz, siehe Tabelle 4.2, basierend auf folgenden Daten erstellt [14]:

- Eingangsschlackentemperatur 1500 °C
- Ausgangsgranulattemperatur 100 °C
- Eingangs lufttemperatur 25 °C
- Ausgangs heißlufttemperatur 600 °C

Tabelle 4.2.: Energiebilanz des Granulationsverfahrens der CSIRO [14]

<table>
<thead>
<tr>
<th>Energie [GJ/h]</th>
<th>Eingang</th>
<th>Ausgang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>63,6</td>
<td>Heißluft</td>
</tr>
<tr>
<td>Luft</td>
<td>0,0</td>
<td>Granulat</td>
</tr>
<tr>
<td>Verluste</td>
<td></td>
<td>17,0</td>
</tr>
<tr>
<td>Summe</td>
<td>63,6</td>
<td>63,6</td>
</tr>
</tbody>
</table>

Aus der Energiebilanz errechnet sich ein Wirkungsgrad von circa 70%. Sie wurde zusammen mit den Simulationsmodellen und den Versuchsergebnissen für die Planung der nächsten Ausbaustufe mit 7,6 m herangezogen. Die Anlage soll pro Jahr 300.000 Tonnen Hochofenschlacke verarbeiten. Dafür wurde desweiteren eine Machbarkeitsstudie erstellt. In Folge wird die nasse Granulation mit dem SDA Granulationsverfahren hinsichtlich Investitions- und Betriebskosten verglichen und grafisch gegenübergestellt, siehe Abbildung 4.16 und 4.17. [14]

Abbildung 4.16.: Investitionskosten der trockenen Granulation nach dem SDA Verfahren der CSIRO im Vergleich zu der nassen Granulation nach [14]
4. AKTUELLE KONKURRENZVERFAHREN UND FORSCHUNGSGRUPPEN

Abbildung 4.17.: Betriebskosten-Vergleich der trockenen Granulation nach dem SDA Verfahren der CSIRO und der nassen Granulation nach [14]


4.4. Siemens VAI (SVAI)

Die Siemens VAI beziehungsweise darin aufgegangene Unternehmensteile von British Steel haben bereits zwei Versuchsanlagen betrieben. In beiden Fällen kam das Rotating-Cup Verfahren zum Einsatz.

Anfang der 1990er Jahre wurde in Redcar (UK) eine Demonstrationsanlage gebaut, die ungefähr 8500 Tonnen pro Tag Hochofenschlacke verarbeitet. Der Versuchsaufbau bestand nur aus einem rotierenden Drehteller, der den auftreffenden Schleckenstrom zerteilt und Richtung Wand schleudert, siehe Abbildung 4.18. Der Abstand zwischen Drehteller und Granulatorwand beträgt circa 10 m. Aufgrund dieser großen Distanz können die notwendige Abkühlrate der Schlackeartikel garantiert werden, um ein Anpacken an der Wand zu verhindern. Als Produkt kann bei den Versuchen amorphp erstarrtes Granulat gewonnen werden, welches mittels Bagger aus dem Granulator entfernt wurde. [53]

Bei der Versuchsdurchführung steht primär die Durchführbarkeit der trockenen Granulation von Hochofenschlacke im Vordergrund und es wurde kein Augenmerk auf eine Energierückgewinnung gelegt. Zur damaligen Zeit war der politische und wirtschaftliche Druck noch nicht so hoch wie heute, weshalb das Projekt zunächst nicht weiterverfolgt wurde. [53]
Abbildung 4.18.: Siemens VAI Vorversuche trockene Granulation von Hochofenschlacke in Redcar (UK) [53]


Abbildung 4.19.: Siemens Vorversuche zur trockene Granulation von Hochofenschlacke in Vitkovice (CZ) [53]

Mit steigenden Energiepreisen und dem Ruf nach ständiger Effizienzsteigerung wurde die Forschung auf diesem Gebiet wieder aufgenommen und mündete im Bau der Versuchsanlage im Technikum des Lehrstuhles für Thermoprozesstechnik an der Montanuniversität Leoben. Bei dieser Versuchsanlage steht neben der ausreichenden Granulatqualität auch die Energierückgewinnung im Fokus. Das Prinzip basiert wie bereits erwähnt auf dem Rotating-Cup Verfahren und kann der folgenden Abbildung 4.21 entnommen werden.

Abbildung 4.21.: Prozessschema der trockenen Granulation mit Wärmerückgewinnung der Firma Siemens VAI [53]

Den Mittelpunkt der Anlage bildet der rotierende Drehteller, der den mittig auftreffenden Schlackestrom zerteilt und die entstehenden Schlacketrophen Richtung Granulatorwand schleudert. Im Flug vom Drehteller bis zur Wand werden die Partikeln soweit abgekühlt, dass sich eine feste Schlackenpartikeloberfläche ausbildet. Von der Wand prallen sie ab und fallen in ein Wirbelbett, das durch einen speziellen Luftverteilerboden in Bewegung gehalten wird. Der
Wärmeübergang von Schlacke zur Luft erfolgt im Flug des Partikels beziehungsweise anschließend im Wirbelbett. Die heiße Prozessluft wird am Granulatorkopf abgezogen und kann für eine weitere energetische Nutzung herangezogen werden.


Abbildung 4.22.: Prozessübersicht der Firma Siemens VAI einer möglichen Integrierung eines exemplarischen 1 t/min Modells zur getrockneten Granulation von Hochofenschlacke in ein Hüttenwerk [53]

Der blau dargestellte Bereich in der Abbildung kann je nach Bedarfsfall und örtlichen Gegebenheiten angepasst werden.

In der Tabelle 4.3 ist die Machbarkeitsstudie des von Siemens VAI entwickelten Verfahrens zur Energierückgewinnung dargestellt. Die Berechnung basiert auf folgenden Daten. Die Erlöse der eingesparten CO₂-Zertifikaten und den Produkteintrag in der Zementindustrie wurden nicht berücksichtigt [54]:

- Schlackenproduktion 2 t/min
- Dampferzeugung (60 bar, 430 °C) 45 t/h
- Betriebsstunden 8400 h/a
- Stromkosten 75 €/MWh

Tabelle 4.3.: Machbarkeitsstudie der Firma Siemens VAI des Granulationsverfahrens nach [54]

<table>
<thead>
<tr>
<th>Stromproduktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
</tr>
<tr>
<td>Energieproduktion</td>
</tr>
<tr>
<td>Amortisationszeit</td>
</tr>
</tbody>
</table>
5. Beschreibung der Versuchsanlage

Das folgende Kapitel beinhaltet die Versuchsanlagenbeschreibung der Technikumsanlage am Lehrstuhl für Thermoprozesstechnik an der Montanuniversität Leoben.

Auf Basis experimenteller Voruntersuchungen seitens der Siemens VAI wurde im Technikum des Lehrstuhles für Thermoprozesstechnik eine Anlage zur trockenen Granulation von Hochofenschlacke nach dem Rotating-Cup Verfahren errichtet, vergleiche Kapitel 4.4. Die Hauptanlagenkomponenten sind der folgenden Aufzählung und dem Aufstellungsplan, siehe Abbildung 5.1, zu entnehmen:

- Granulator (1)
- Kippvorrichtung für Schlackenkübel (2)
- Gasbrenner für Luftvorwärmung (3)
- Wasserquenche (4)
- Saugzuggebläse (5)
- Rohrleitungssystem (6)
- Schlackenkübel (7)

![Abbildung 5.1.: Aufstellungsplan der Technikumsanlage](image_url)


![Zeitrafferaufnahme Kippvorgang](image1)

![Schlackenstrom in Rinne](image2)

Abbildung 5.2.: Kippvorgang des Schlackenkübels in die Technikumsanlage

Beim Auftreffen auf dem Dreheller kommt es zur Zerteilung des Schlackestromes aufgrund der wirkenden Zentrifugalkräfte, siehe Abbildung 5.3. Dabei werden die Partikel radial Richtung Granulatorwand geschleudert, kühlen im Flug unter die Transformationstemperatur ab und fallen als festes Granulat in ein bewegtes Wirbelbett. Eventuelle Anpackungen an der Granulatorwand sollen zusätzlich durch den außen angebrachten Wassermantel verhindert werden. Der Granulatorboden ist so gestaltet, dass durch die Luftverteilung ein sich ständig bewegendes Wirbelbett gewährleistet ist. Dadurch ist ein guter Wärmeübergang von Schlacke zur Luft gegeben. [55]
5. BESCHREIBUNG DER VERSUCHSANLAGE

Abbildung 5.3.: Granulationsvorgang am Dreheller der Technikumsanlage

Bei der Granulation wird die Prozessluft von unten in den Granulatorraum eingebracht und
küht wie vorher erwähnt die Schackepartikel im Flug nach dem Gegenstromprinzip ab. Die
Granulatorhaube ist mit speziellen Strömungsgleichrichtern ausgestattet und ermöglicht es,
heiße Prozessluft über die Abgasstrecke abzuziehen ohne feine Partikel auszutragen. Anschlie-
ßend wird die heiße Abluft über eine Quenche mit Hilfe von Wasser auf eine Temperatur kleiner
60°C abgekühlt, um das Saugzuggebläse zu schützen. Danach wird der abgekühlte Luftstrom
über einen Tropfenabscheider geführt und verlässt die Halle über den Kamin. Der Austrag der
granulierte Schlacke erfolgt über vier Auslässe am Granulatorboden. [55]

Bei einer industriellen Realisierung der trockenen Granulation kann die produzierte Heißluft
zum Beispiel zur Dampferzeugung dienen und in weiterer Folge über eine Dampfturbine ver-
stromt werden. Rechnerisch ergeben sich bei einem Massenfluss von einer Tonne Schlacke pro
Minute eine thermische Leistung von 20 MW beziehungsweise eine elektrische Leistung von
6 MW, die rückgewonnen werden kann, vergliche Kapitel 4.4. [55]

Die Durchführung eines Einzelversuches zur trockenen Granulation von Hochofenschlacke er-
fordert einen hohen Arbeits- und Personal aufwand. Zu Beginn wird der Schlackenkübel über
Nacht auf circa 1200°C vorgeheizt. In diesen Kübel wird anschließend die schmelzflüssige Hoch-
ofenschlacke mit circa 1500°C abgestochen und in die Kippvorrichtung am Granulator vom
Keller ins Erdgeschoss manipuliert. Danach erfolgt der Kippvorgang mir einem einstellbaren
Schlackenfluss zwischen 20 und 60 kg/min. Die Schlacke gelangt über die vorgeheizte Rinne
mittig auf den Dreheller und wird dort granuliert. [55]
Die eben genannten Schritte werden in der Abbildung 5.4 graphisch in Anlehnung an die örtlichen Gegebenheiten im Technikum TPT dargestellt. Aktuell können pro Tag zwei Granulationsversuche durchgeführt werden.

Abbildung 5.4.: Einzelversuchsablauf der Technikumsanlage

Am Ende eines Einzelversuches erhält man ein Granulationsprodukt, vergleiche Abbildung 5.5a, das für weitere Laboruntersuchungen aufbereitet und verschickt wird. Um den Granulationsverlauf des Versuches grundsätzlich zu bewerten, empfiehlt es sich, den Glasgehalt mit Hilfe eines Lichtmikroskops, wie in Abbildung 5.5b dargestellt zu bestimmen. Über den Glasgehalt kann die erforderliche Abkühlungsrate zur glasigen Erstarrung des Schlackepartikels quantifiziert werden.

Abbildung 5.5.: Granulationsprodukt der Technikumsanlage

Im besten Fall kann bei einem Granulationsversuch ein amorphes Granulationsprodukt mit vergleichbaren Eigenschaften von Hüttenasch und Granulatorkörpern ausgetragen, die Schackenwollenbildung verhindert und eine Ablufttemperatur von mindestens 400 °C generiert werden.
Bei der Planung und Errichtung der Versuchsanlage am Lehrstuhl für Thermoprozesstechnik wurde eine Vielzahl von Mess- und Regeltechnikeinrichtungen berücksichtigt, um den Prozess ganzheitlich zu erfassen. Mit der dazugehörigen speicherprogrammierbaren Steuerung (SPS) ist es möglich, die Granulationsanlage über eine Software zu betreiben. Zusätzlich können durch diesen Aufbau alle generierten Messsignale erfasst und gespeichert werden.

In der Technikumsanlage sind folgende Messinrichtungen verbaut:

- 31 Thermoelemente Typ-K
- Quotientenpyrometer
- IR-Kamera
- Hochtemperaturanemometer (HTA)
- 22 Druckmessungen (Drucksensoren, Druckmessdosen)
- 5 Durchflussmessungen
- 3 Wiegezellen
6. Praktische Durchführung


6.1. Bilanzgrenze der energetischen Betrachtung

Für die energetische Betrachtung des Granulationsprozesses galt es zu Beginn die Systemgrenzen zu definieren. Allgemein können Bilanzgleichungen für alle extensiven Größen aufgestellt werden. Kernpunkt ist dabei die Festlegung eines Kontrollvolumens (Bilanzraum) und die daraus folgenden Bilanzgrenzen. Das Kontrollvolumen kann die verschiedensten Formen annehmen zum Beispiel eines differentiellen Volumenanteils oder eines Anlagenteils. Grundsätzlich richtet sich die Wahl der Kontrollvolumina immer nach der Aufgabenstellung. [56]

Im Fall der Technikumsanlage sollte die Wärmeübertragung von Schlacke zur Luft erhoben werden. Dafür wurde der Granulator mit dem mittig sitzenden Drehteller als Bilanzraum gewählt, siehe Abbildung 6.1.

Abbildung 6.1.: Bilanzgrenze der energetischen Betrachtung der Technikumsanlage [57]
Aus der festgelegten Bilanzgrenze ergeben sich folgende Ein- und Ausgangsströme (Schlacke, Luft, Wasser) für die energetische Betrachtung, welche in der Abbildung 6.2 dargestellt sind.

![Abbildung 6.2.: Ideale Bilanzströme der energetischen Betrachtung des Granulators](image)

Auf Basis dieser Bilanzgrenze galt es aus den zur Verfügung stehenden Messeinrichtungen jene zu identifizieren, die die jeweiligen Temperaturen \( T \) und Massenströme \( m \) der Bilanzströme erfassen. Die für die Berechnung notwendigen spezifischen Wärmeleistungen für Luft [58] und Wasser [59] wurden der Literatur entnommen. Dabei wurde für Luft eine mittlere spezifische Wärmeleistung in einem Bereich von 0 bis 300 °C angenommen. Der Wert für Hochofenschlacke wurde vom Institut für Baustoff Forschung FEBES in Deutschland bestimmt, siehe Tabelle 6.1. [20]

![Tabelle 6.1: Wärmeleistung von Hochofenschlacke nach [20]](image)

<table>
<thead>
<tr>
<th>Schlackentyp</th>
<th>Temperatur [°C]</th>
<th>TempA</th>
<th>TempB</th>
<th>TempC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOS Typ A: &quot;sauer&quot; B1 &lt; 1,0</td>
<td>827</td>
<td>1,05</td>
<td>1,04</td>
<td>1,04</td>
</tr>
<tr>
<td>HOS Typ B: &quot;mittel&quot; B1 = 1,1</td>
<td>1227</td>
<td>1,10</td>
<td>1,09</td>
<td>1,09</td>
</tr>
<tr>
<td>HOS Typ C: &quot;basisch&quot; B1 &gt; 1,2</td>
<td>1427</td>
<td>1,13</td>
<td>1,12</td>
<td>1,11</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>1,09</td>
<td>1,08</td>
<td>1,08</td>
<td></td>
</tr>
</tbody>
</table>

Zur weiteren Betrachtung wurde ein zusätzlicher Bilanzstrom für die Verluste (Messfehler, Strahlungsverluste, ...) eingeführt, vergleiche Abbildung 6.3.

![Abbildung 6.3.: Bilanzströme des Granulators inklusive Verluste](image)
Für eine vollständige energetische Betrachtung der Granulation konnten nicht alle Daten repräsentativ erfasst werden. Daher mussten Annahmen für folgende Werte getroffen werden:

- Schlackenausgangstemperatur
- Wassermassenstrom Kühlmantel
- FalschluftEintrag Granulator


Der Massenstrom des eigentlichen stationären Wassers im Kühlmantel ergibt sich aus der Division der Masse durch den Betrachtungszeitraum in Sekunden. Dazu wurde die Masse über das Volumen aus dem 3-D Modell mit 275 kg Wasser berechnet.

Um die Messdatenauswertung zu vereinfachen, wurden Excel-Vorlagen mit den benötigten Messignalen erstellt, welche auch gleichzeitig die weitere Aufbereitung der Daten erleichtert. Die Messdatenauswertung wird im folgenden Punkt 6.2 anhand eines Beispiels näher beschrieben.

Mit den zusammengefassten Excel-Daten kann die Berechnung des Wärmestromes \( \dot{Q} \) [kJ/s] der einzelnen Ein- und Ausgangsströme durchgeführt werden. Der Wärmestrom \( \dot{Q} \) ist das Produkt der Multiplikation der spezifischen Wärmekapazität \( c_p \) [kJ/kg*°K], des Massenstroms \( \dot{m} \) [kg/s] und der Temperaturdifferenz \( \Delta T \), vergleiche Formel 6.1.

\[
\dot{Q} = c_p \cdot \dot{m} \cdot \Delta T \quad (6.1)
\]

Für den Bilanzraum entspricht der Wirkungsgrad \( \eta \) der Wärmeübertragung von Schlacke zur Luft und errechnet sich aus der Division des Differenzwärmestromes von Luft \( \Delta \dot{Q}_{Luft} \) durch den Differenzwärmestrom von Schlacke \( \Delta \dot{Q}_{Schlacke} \), vergleiche Formel 6.2.

\[
\eta = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{\Delta Q_{Luft}}{\Delta Q_{Schlacke}} \quad (6.2)
\]
6.2. Ermittlung der relevanten Größen


Abbildung 6.4.: Messpunkte des Granulators aus dem Rohrleitungs- und Instrumentenfließbildes der Technikumsanlage

Grundsätzlich gilt es, die Eingangs- und Ausgangsströme des Granulators für die energetische Betrachtung zu erfassen, vergleiche Tabelle 6.2.

Tabelle 6.2.: Auflistung der Ein- und Ausgangsströme des Granulators und deren messtechnische Erfassung

<table>
<thead>
<tr>
<th>Eingang</th>
<th>Ausgang</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperatur</strong> [°C]</td>
<td></td>
</tr>
<tr>
<td>Schlacke - Pyrometer Drehteller</td>
<td>Schlacke - Thermoelemente Typ K, Graulatorraum</td>
</tr>
<tr>
<td>Luft - Thermoelemente Typ K Granulatorverteilerboden</td>
<td>Luft - Thermoelemente Typ K Granulatorhaube</td>
</tr>
<tr>
<td>Wasser - Thermoelemente Typ K Wassermantel</td>
<td>Wasser - Thermoelemente Typ K Wassermantel</td>
</tr>
<tr>
<td><strong>Massenstrom</strong> [kg/s]</td>
<td></td>
</tr>
<tr>
<td>Schlacke - Wiegezelle Kippvorrichtung</td>
<td>Schlacke - Wiegezelle Kippvorrichtung</td>
</tr>
<tr>
<td>Luft - Durchflussmessung Pitotrohr Granulatorzuleitung</td>
<td>Luft - Hochtemperaturanemometer (HTA) Abgasleitung</td>
</tr>
<tr>
<td>Wasser - Wassermantelvolumen und Versuchsduer</td>
<td>Wasser - Wassermantelvolumen und Versuchsduer</td>
</tr>
</tbody>
</table>
Bei der Temperaturerfassung kommen Thermoelemente in den verschiedensten Bauarten zum Einsatz. Desweiteren wird für die Bestimmung der Schlackeneingangstemperatur ein Quotientenpyrometer verwendet. Zusätzlich ist für die Verifizierung des heißen Abluftstroms eine zusätzliche Hochtemperaturanemometermessung angedacht.


Für die Messung der drei Luftzuleitungen am Granulator wurden pro Ring vier Thermoelemente, in Summe zwölf Stück, verbaut. Die Temperaturmesspunkte wurden symmetrisch in den drei Verteilerringen am Granulatorboden angebracht, vergleiche Abbildung 6.4 und Abbildung 6.5.

Abbildung 6.5.: Eingangslufttemperaturmessung in den drei Verteilerringen am Granulatorboden der Technikumsanlage


Durch den Einsatz eines Quotientenpyrometers ist es möglich, eine punktuelle, berührungslose Temperaturmessung der am Dreheller auftreffenden Schlacke durchzuführen. Zusätzlich ist noch eine IR-Kamera verbaut, die es ermöglicht den Partikelflug vom Dreheller bis zur Granulatorwand zu registrieren. In der folgenden Abbildung 6.6 werden der Messaufbau sowie die Messpunkte des Quotientenpyrometers und der IR-Kamera im Granulatorraum der Technikumsanlage dargestellt.
Abbildung 6.6.: Messaufbau und -punkte des Quotientenpyrometers und der IR-Kamera im Granulator der Technikumsanlage


Abbildung 6.7.: Messaufbau und -lanze des Hochtemperaturanemometers (HTA)


![Abbildung 6.8: Messverfahren/-methoden zur Volumenstrombestimmung [60]](image)

Nach den ersten Messungen musste die Log-linear Methode aufgrund der Messpunktanordnung in horizontaler und vertikaler Ebene verworfen werden, denn der Messstutzenwechsel ist mit einem großen arbeits- und zeitechnischen Aufwand verbunden. Desweiteren besteht die Gefahr bei jeder Änderung des Messaufbaus die Messlanze beziehungsweise das vorne angebrachte Flügelrad zu beschädigen. Daher wurde das Schwerlinienverfahren mit den Messpunkten in einer Rohrebene bevorzugt.


Abbildung 6.9.: Stationäre Durchflussmessung in der Granulatorzuleitung der Technikumsanlage

6.3. Datenaufbereitung und Auswertung

Mit Hilfe der umfangreichen Messdatenerfassung ist es möglich nach Beendigung des Versuches alle Daten mit Hilfe der Software IbaAnalyzer® 5.18.1 auszuwerten, siehe Abbildung 6.10.

Abbildung 6.10.: Analysenfenster IbaAnalyzer der relevanten Messsignale für die Messdatenauswertung

Die Schritte der Versuchsauswertung für die energetische Betrachtung und der daraus resultierende Wirkungsgrad der Wärmeübertragung werden anhand eines Einzelversuches näher erläutert. Über die Pyrometertemperatur am Cup, Schlackenmassenstrom und die Ablufttemperatur an der Granulatorhaube wird der stabile Zustand im Granulator ermittelt. In der folgenden Abbildung 6.11 ist der stationäre Zustand eines Granulationsversuches dargestellt. Für diesen Bereich wird anschließend der Wirkungsgrad berechnet.

Abbildung 6.11.: Stationärer Zustand beim Granulationsprozess

Tabelle 6.3.: Excel-Vorlage der Messdatenerfassung für die Bestimmung des Wirkungsgrades der Wärmeübertragung von Schlacke zur Luft der Versuchsanlage

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>reference temperature = 273,15 [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Q = cp \cdot m \cdot \Delta T$</td>
</tr>
<tr>
<td></td>
<td>$\eta = \frac{M_{\text{out}}}{M_{\text{in}}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K01_V05</th>
<th>start</th>
<th>end</th>
<th>sum [min:ss]</th>
<th>sum [s]</th>
<th>00:01:25</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>study state</td>
<td>Ti024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Water**
- Ti019: 19,0 - 21,1
- Ti020: 27,0 - 91,2
- Ti021: 29,3 - 34,4

**Slag flow**
- WI_027: 18,8 [kg/min]
- cup Ti024: 1448,2 [°C]

**Air Inlet**
- Ti013_1: 31,0 - Ti014_1: 29,6 - Ti015_1: 29,8
- Ti013_2: 30,9 - Ti014_2: 30,7 - Ti015_2: 29,4
- Ti013_3: 31,9 - Ti014_3: 30,4 - Ti015_3: 28,6
- Ti013_4: 33,2 - Ti014_4: 29,8 - Ti015_4: 29,1

**Air Outlet**
- Ti029_1: 224,8
- Ti029_2: 224,8
- Ti029_3: 219,9
- Ti029_4: 237,8

Anschließend werden die gemittelten Messwerte übersichtlich in einer Tabelle zusammengefasst, um den Wirkungsgrad nach den Formeln 6.1 und 6.2 zu berechnen, siehe Tabelle 6.4.
Tabelle 6.4.: Zusammenfassung der Messdaten zur Berechnung des Wirkungsgrades der Wärmeübertragung von Schlacke zur Luft der Versuchsanlage

<table>
<thead>
<tr>
<th>K02/V03</th>
<th>ΔT [°C]</th>
<th>m [kg/s]</th>
<th>cp [kJ/kg*K]</th>
<th>Q [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1429,40</td>
<td>0,36</td>
<td>1,08</td>
<td>553,1</td>
</tr>
<tr>
<td>Luft</td>
<td>105,07</td>
<td>1,71</td>
<td>1,02</td>
<td>183,7</td>
</tr>
<tr>
<td>Wasser</td>
<td>35,87</td>
<td>5,98</td>
<td>4,18</td>
<td>896,3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1633,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgang</th>
<th>ΔT [°C]</th>
<th>m [kg/s]</th>
<th>cp [kJ/kg*K]</th>
<th>Q [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>100,00</td>
<td>0,36</td>
<td>1,08</td>
<td>38,7</td>
</tr>
<tr>
<td>Luft</td>
<td>294,66</td>
<td>1,71</td>
<td>1,02</td>
<td>515,1</td>
</tr>
<tr>
<td>Wasser</td>
<td>38,37</td>
<td>5,98</td>
<td>4,18</td>
<td>958,7</td>
</tr>
<tr>
<td>Verluste</td>
<td></td>
<td></td>
<td></td>
<td>120,5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1633,1</td>
</tr>
</tbody>
</table>


Desweiteren wurden Sankey-Diagramme zur Visualisierung der Wärmestrome erstellt. In der folgenden Abbildung 6.13 ist der Versuch K01/V05 exemplarisch dargestellt.

![Sankey-Diagramm der Wärmestrome eines Einzelversuches](image)

Abbildung 6.12.: Sankey-Diagramm der Wärmestrome eines Einzelversuches
6.4. Ergebnisse und Diskussion


Es ergeben sich folgende Ergebnisse für die Berechnung der Wirkungsgrade der Einzelversuche, siehe Tabelle 6.5.

Tabelle 6.5.: Zusammenfassung der berechneten Wirkungsgrade der durchgeführten Versuche zur trockenen Granulation

<table>
<thead>
<tr>
<th>Versuchsnummer</th>
<th>THY K01/V05</th>
<th>THY K02/V03</th>
<th>VASL K03/V10</th>
<th>SVAI MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkungsgrad $\eta$</td>
<td>0,52</td>
<td>0,64</td>
<td>0,60</td>
<td>0,59</td>
</tr>
<tr>
<td>Glasgehalt [V.-%]</td>
<td>&gt; 95</td>
<td>&gt; 95</td>
<td>&gt; 99</td>
<td></td>
</tr>
<tr>
<td>Granulationsrate [%]</td>
<td>95</td>
<td>72</td>
<td>n.b.¹</td>
<td></td>
</tr>
</tbody>
</table>

¹nicht bestimmbar, aufgrund des Versuchsverlaufes (Anpackungen,...)


![Diagramm](image_url)

Abbildung 6.13.: Berechnete Wirkungsgrade der Wärmeübertragung von Schlacke zur Luft der durchgeführten Versuche

Der Mittelwert der Einzelversuche wird den Konkurrenzerfahren gegenübergestellt und in der Tabelle 6.6 abgebildet. Daraus lässt sich erkennen, dass sich die aktuellen Konkurrenzerfahren in einem Bereich befinden. Dabei sei nochmal darauf hingewiesen, dass die Vergleichsdaten aus der Literatur stammen und nur als Anhaltspunkte angesehen werden dürfen.

Tabelle 6.6.: Vergleich der Wirkungsgrade der Konkurrenzerfahren anhand von Literaturwerten mit den Versuchsergebnissen

<table>
<thead>
<tr>
<th>Firma</th>
<th>PW</th>
<th>CISRI [47]</th>
<th>CSIRO [14]</th>
<th>SVAI MW</th>
<th>SVAI Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkungsgrad $\eta$</td>
<td>–</td>
<td>0,77</td>
<td>0,70</td>
<td>0,59</td>
<td>0,64</td>
</tr>
<tr>
<td>Granulationsverfahren</td>
<td>ZSV¹</td>
<td>RCA²</td>
<td>SDA³</td>
<td>RCA²</td>
<td>RCA²</td>
</tr>
</tbody>
</table>

¹Zusammenstoß Verfahren; ²Rotating Cup Atomizer; ³Spinning Disc Atomizer
Eine besondere Schwierigkeit bei der Auswertung lag darin, dass nicht alle notwendigen Daten vollständig erfasst werden konnten. Daher mussten sinnvolle Annahmen getroffen werden. Dies betrifft im Speziellen die Schackenausgangstemperatur im Granulator, die mit 100 °C für die Berechnung angenommen wurde.


![Graph Wirkungsgrad Vergleich](image)

**Abbildung 6.14.** Vergleich der Wirkungsgrade der Konkurrenzverfahren mit dem Mittelwert und Maximalwert der Einzelversuche
7. Zusammenfassung

Bei der Eisen- und Stahlproduktion in einem integrierten Hüttenwerk gehen heute noch ungefährt 10% der Abwärme durch Schlacken verloren. Für Hochofenschlacke geht man von einem Verlust von 1,5 GJ/t aus. Bisweilen gibt es keine großtechnische Behandlung, die es ermöglicht diese Energie zu nutzen. Viele Verfahren und Entwicklungen sind bisher an den schwierigen Eigenschaften der flüssigen Hochofenschlacke gescheitert, dies betrifft folgende [22]:

- Oberflächenspannung ist gering
- Viskosität nimmt mit fallender Temperatur stark zu
- Wärmeleitfähigkeit ist gering


- Wasserverbrauch: Für die Granulation werden ungefähr 6-10 Tonnen Wasser pro Tonne Schlacke benötigt, davon gehen rund 1,0-1,2 Tonnen Wasser als Dampf bei offenen Systemen verloren. [26]
- Energieverlust: Die in der Schlacke beinhaltete Energie von rund 1,5 GJ/t geht durch die Entstehung von großen Mengen an Niedertemperaturdampf verloren.
- Emissionen: Bei der Reaktion von Schlacke und Wasser können Schwefeldioxid SO₂, Schwefelwasserstoff H₂S und andere Sulfatverbindungen entstehen.
- Zusatzenergie: Für die Trocknung des Granulates werden rund 132 kWh/t verbraucht.

Als großer Vorteil der nassen Granulation muss die Robustheit und die Einfachheit des Prozesses hervor gestrichen werden. Besonders die Hochofenschlackenzusammensetzung und die Temperatur haben einen geringeren Einfluss auf die nasse Granulation im Vergleich zur trockenen. Es kann davon ausgegangen werden, dass bei der nassen Behandlung qualitativetter Hüttensand entsteht. Dies ist bis dato nach dem jetzigen Entwicklungsstand für trockene Granulationen noch nicht gegeben. Es gibt bisweilen noch keine Erfahrung wie sich eine großtechnische Anlage bei hohen Schlackemengen verhält, beziehungsweise wie der Granulationsprozess gesteuert werden kann. Bei solch einer Anlage ist es notwendig, die Prozessparameter der Granulation
(Drehtellergeschwindigkeit, Luftmenge,...) laufend an die aktuellen Gegebenheiten anzupassen. Dazu gibt es die verschiedensten Ansatzmöglichkeiten, von der Lastaufnahme des Drehtellermotors bis hin zu akustischen Steuerung anhand der charakteristischen Granulationsgeräusche. Daraus ergeben sich noch einige offene Fragestellungen für eine großtechnische Realisierung am Hochofen.

Zusammenfassend kann die Sinnhaftigkeit der trockenen Granulation von Hochofenschlacke grundsätzlich an der stofflichen Verwertung und der zusätzlichen Wärmerückgewinnung beim Granulationsprozess festgemacht werden. Des weiteren sind folgende Vorteile gegenüber der nassen Granulation zu nennen:

- Sinnvolle Nutzung der in der Schlacke enthaltenen Wärmeenergie
- Wegfall der Wasserwirtschaft und somit keine Wasserverschmutzung
- geringere Emissionsbelastung
- Erzeugung von Hüttensand
- Energieintensiver Trocknungsprozess der granulierten Schlacke entfällt

Auch im wirtschaftlichen Vergleich vom SDA-Verfahren mit der nassen Granulation, der von von CSIRO angestellt wurde, könnte die trockene Granulation mit rund 50 % Investitions- und Betriebskosteneinsparung punkten. Die Werte sind kritisch zu hinterfragen, jedoch lassen sie eine Grundtendenz erkennen.

Wird der aktuelle Forschungsbereich der trockenen Granulation betrachtet, wird grundsätzlich in zwei Granulationsmethoden unterschieden. Zum einen das Zusammenstoßverfahren und zum anderen die Zentrifugalgranulation, nach dem Rotating-Cup oder Spinning-Disk Verfahren.

Bei der Versuchsdatenanalyse der Einzelversuche zur Bestimmung des Wirkungsgrades der Wärmeübertragung von Schlacke zur Luft wurden Ergebnisse erzielt, die sich im Bereich der aktuellen Konkurrenzverfahren befinden, vergleiche Tabelle 7.1.

Tabelle 7.1.: Vergleich der Wirkungsgrade der Konkurrenzverfahren anhand von Literaturwerten mit den Versuchsergebnissen

<table>
<thead>
<tr>
<th>Firma</th>
<th>PW</th>
<th>CISRI [47]</th>
<th>CSIRO [14]</th>
<th>SVAI MW</th>
<th>SVAI Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkungsgrad $\eta$</td>
<td>–</td>
<td>0,77</td>
<td>0,70</td>
<td>0,59</td>
<td>0,64</td>
</tr>
<tr>
<td>Granulationsverfahren</td>
<td>ZSV$^1$</td>
<td>RCA$^2$</td>
<td>SDA$^3$</td>
<td>RCA$^2$</td>
<td>RCA$^2$</td>
</tr>
</tbody>
</table>

$^1$Zusammenstoß Verfahren; $^2$Rotating Cup Atomizer; $^3$Spinning Disc Atomizer
8. Ausblick


Um eine gute Wissensbasis für die großtechnische Realisierung bieten zu können, sind noch weitere Versuche unter möglichst realen Bedingungen und über einen längeren Zeitraum notwendig. Dazu werden größere Schlackenmengen benötigt, die zum Beispiel durch den Bau einer Pilotanlage direkt am Hochofen realisiert werden können. Für eine Laboranlage gilt es, die Möglichkeit abzuklären, ob die Hochofenschlacke eventuell über einen induktiven Prozess bereitgestellt werden kann. Dadurch würden sich eine größere Versuchsanzahl und auch mehr Variationen in der Versuchsdurchführung ergeben. Dabei wären die Drehtellergeometrie, eine erhöhte Prozesslufttemperatur von 600-700 °C und die Verwendung eventueller Einbauten im Granulator interessante Fragestellungen. Desweiteren sollte das einstufige Verfahren noch einmal betrachtet und die Vor- und Nachteile gegenüber einem zweistufigen Verfahren ausgearbeitet werden.


Bei der industriellen Umsetzung einer Granulationsanlage mit Energierückgewinnung aus Hochofenschlacke gilt es für die weitere Forschung folgende Punkte zu berücksichtigen [27]:

* Die Produktqualität, um den geforderten Glasgehalt und die dazu notwendige Abkühlrate zu gewährleisten.

* Im Optimalfall fällt die rückgewonnene Energie aus der schmelzflüssigen Schlacke in einem kontinuierlichen und dauerhaften Prozess an. Die Schlacke an sich fällt aber normalerweise in einem diskontinuierlichen Prozess an. Das Zusammenführen dieser beiden Prozesse birgt noch eine gewisse Problematik, die es für die zukünftige Industrieanwendung zu lösen gilt.
- Die Hochtemperatur-Energierrückgewinnung und -Behandlung sind beides Schlüsseltechnologien um die nachhaltige Entwicklung der Eisen- und Stahlindustrie weiter voran zu treiben.


Abbildung 8.1.: Einflussparameter eines Hüttenwerkes auf die Eigenschaften ungemahlenen Hüttenandes nach [61]

Dabei bildet die eigentliche Granulation nur einen Teil im Gesamtproduktionsprozess, womit ihre Einfluss auf die Schlacke bei den Productionslagen und deren Endproduktqualität begrenzt ist. Daher sollte der trockene Granulationsprozess so gestaltet werden, dass er mit den verschiedensten Ausgangsbedingungen zurende kommt und eine immer gleichbleibende Produktqualität gewährleistet. Diese geforderte Robustheit muss der Prozess noch über längere Versuchszeiten bestätigen. [10]

Die Schlackenbehandlung ist gegenwärtig ein großes Thema und wird von den verschiedensten Forschungsgruppen vorangetrieben. Der nächste Schritt dabei ist der Bau einer großtechnischen Pilotanlage in einem Hüttenwerk, um die Voraussetzungen für eine baldige Marktreife der trockenen Granulation zu schaffen.
Nomenklatur

Chemische Formelzeichen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Al_2O_3$</td>
<td>Aluminiumoxid</td>
</tr>
<tr>
<td>$CaO$</td>
<td>Calciumoxid</td>
</tr>
<tr>
<td>$CO_2$</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>$Fe$</td>
<td>Eisen</td>
</tr>
<tr>
<td>$H_2S$</td>
<td>Schwefelwasserstoff</td>
</tr>
<tr>
<td>$K_2O$</td>
<td>Kaliumoxid</td>
</tr>
<tr>
<td>$MgO$</td>
<td>Magnesiumoxid</td>
</tr>
<tr>
<td>$Mn$</td>
<td>Mangan</td>
</tr>
<tr>
<td>$NaO$</td>
<td>Natriumoxid</td>
</tr>
<tr>
<td>$P_2O_5$</td>
<td>Phosphorpentoxyd</td>
</tr>
<tr>
<td>$S$</td>
<td>Schwefel</td>
</tr>
<tr>
<td>$SiO_2$</td>
<td>Siliciumoxid</td>
</tr>
<tr>
<td>$SO_2$</td>
<td>Schwefeldioxid</td>
</tr>
<tr>
<td>$TiO_2$</td>
<td>Titanoxid</td>
</tr>
</tbody>
</table>

Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>€</td>
<td>Euro</td>
</tr>
<tr>
<td>°</td>
<td>Grad</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>a</td>
<td>Aktivität</td>
</tr>
<tr>
<td>a</td>
<td>Jahr</td>
</tr>
<tr>
<td>$CO_2e$</td>
<td>Kohlenstoffdioxid Äquivalent</td>
</tr>
<tr>
<td>$\epsilon_p$</td>
<td>Wärmekapazität $,kJ/kg*K$</td>
</tr>
<tr>
<td>$GJ$</td>
<td>Gigajoule</td>
</tr>
<tr>
<td>$h$</td>
<td>Stunde</td>
</tr>
<tr>
<td>$K$</td>
<td>Kelvin</td>
</tr>
<tr>
<td>$kg$</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>$kJ$</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>$kWh$</td>
<td>Kilowattstunde</td>
</tr>
<tr>
<td>$m$</td>
<td>Meter</td>
</tr>
<tr>
<td>$M. - %$</td>
<td>Massenprozent</td>
</tr>
<tr>
<td>$\dot{m}$</td>
<td>Massenstrom $,kg/s$</td>
</tr>
<tr>
<td>$m^3$</td>
<td>Kubikmeter</td>
</tr>
<tr>
<td>$min$</td>
<td>Minute</td>
</tr>
</tbody>
</table>
Mio.  Million  
MJ  Megajoule  
mm  Millimeter  
Mrd.  Milliarde  
MW  Megawatt  
MW  Mittelwert  
MWh  Megawattstunde  
mN  Millinewton  
Pa  Pascal  
$\dot{Q}$  Wärmestrom  \(kJ/s\)  
s  Sekunde  
T  Temperatur  
TWh  Terawattstunde  
U  Umdrehung  
V. – %  Volumenprozent  
W  Watt  

Griechische Symbole

$\Phi$  Oberflächenspannung  \(mN/m\)  
$\Delta$  Delta  –  
$\eta$  Viskosität  \(Pa*s\)  
$\lambda$  Wärmeleitfähigkeit  \(W/m*K\)  
$\eta$  Wirkungsgrad  –  

Abkürzungen

CFD  Computational Fluid Dynamics  
CISRI  Central Iron and Steel Research Institute China  
CSIRO  Australia’s Commonwealth Scientific and Industrial Research Organisation  
CZ  Tschechien  
FEhS  Institut für Baustoff-Forschung e.V.  
HTA  Hochtemperaturanemometer  
IR  Infrarot  
PW  Paul Wurth  
RCA  Rotating Cup Atomizer  
ROGESA  Roheisengesellschaft Saar mbH  
SDA  Spinning Disc Atomizer  
SVAI  Siemens VAI  
THY  ThyssenKrupp AG  
UK  Vereinigte Königreich Großbritannien  
VASL  voestalpine Stahl GmbH in Linz
Literaturverzeichnis


[23] THIENEL, K.-Ch.: *Baustoffkreislauf Eisenhüttenisselacken und Hüttensand*, Universität der Bundeswehr München, Diss., 29.11.2010

[24] BEZIRSKREGIERUNGEN, STAATLICHE AMT FÜR UMWELT UND ARBEITSSCHUTZ OWL, LANDESUMZWLTAMT, STAATLICHE UMWELTÄMTER: *Vereinbarung über die rechtliche Behandlung von Hüttensand und Hochofen-stückschlacke der Firma ThyssenKrupp Stahl*


[26] HAO, Guo ; SHOUHANG, Zhou: Discussion about heat recovery technology of blast furnace slag. In: The proceeding of ironmaking technology conference and ironmaking academic annual meeting, 2010


[35] FUJI, Hiroo ; FUJITA, Tsutomu ; HASHIZUME, Shigeyuki ; KATAYAMA, Hideo ; NAKAMURA, Masashi ; OKUNO, Ryuzo ; TANAKA, Kiyoki: Apparatus for heat recovery from molten slag. 21.09.1982


[38] XU, Yongtong ; DING, Yi ; CAI, Zhangping ; LIU, Qing ; YE, Shufeng: Development of Heat Recovery From Blast Furnace Slag Using Dry Granulation Methods. In: China Metallurgy 17 (2007), Nr. 9, S. 23–25


[51] JAHANSHahi, S.; MATHIESON, J. G.; RIDGEWAY, P.: Overview of the CO2 breakthrough program and linkage to IISI. In: CENTRE FOR SUSTAINABLE RESOURCE PROCESSING (Hrsg.): CSRP’08 - Delivering sustainable solutions to the minerals and metals industries, 2008, S. 18–21


[54] McDonald, Ian; Werner, Andrea; Danov, Vladimir; Siemens VAI (Hrsg.): Dry Slag Granulation with Heat Recovery: All Partners Meeting. Leoben, 10.05.2012


[56] DRAXLER JOSEF: Energiebilanz. Leoben, 2009


Abbildungsverzeichnis

2.4. Ungenutzte Energiereserven nach Aufteilung in drei Temperaturbereiche der Eisen- und Stahlindustrie am Beispiel Chinas nach [8] ..................... 6

3.3. Temperaturabhängigkeit der Viskosität von Hochofenschlacke nach [20] .... 13
3.4. Temperaturabhängigkeit der Wärmeleitfähigkeit von Hochofenschlacke nach [20] 14
3.6. voestalpine Stahl GmbH in Linz – Schlackenbeete ............................. 16
3.7. voestalpine Stahl GmbH in Linz – Aufbereitung Hochofenstückschlacke 16
3.8. voestalpine Stahl GmbH in Linz – Hochofenstückschlacke ................... 17
3.10. voestalpine Stahl GmbH Linz – Hüttenbedingungen .......................... 18
3.13. Temperaturabhängigkeit des Wärmeinhaltes von Hochofenschlacke im Zweiphasensystem, glasig/kristallin [29] ............................. 21
3.14. Temperaturverlauf in einem 5 mm Hochofenschlacketropfen beim Abkühlen nach [31] ............................................................... 21
3.17. Mechanischer Rührprozess mit einer rotierenden Schnecke zur Granulation von Schlacke der Firma Sumitomo Metal [37] ............................ 24
3.20. Prozessschema einer japanischen Druckluftgranulation von Hochofenschlacke [40] 26

78
3.22. Rotating Cup Atomizer (RCA) Granulationsverfahren von Hochofenschlacke von Pickerung [34] ..................................................... 28
3.25. Versuchssapparatur der Hokkaido Universität (China) nach dem SDA Prinzip [27] 30

4.3. Fließbild des Granulationsverfahrens der Firma Paul Wurth nach [44] .................... 33
4.4. Versuchsanlage der Firma Paul Wurth am Werksgeländer der Dillinger Hütte der Firma ROGESA [44] ............................................. 34
4.5. Modell der Pilotanlage der Firma Paul Wurth mit einer Kapazität von 6 t/min flüssiger Hochofenschlacke [46] ............................................. 35
4.7. Drehtellergeometrien der Laborversuchsanlage der Universität Wuhan [48] ............ 37
4.14. Versuchsanlage (SDA) mit einem Durchmesser von 1,2 m und einer Schlackenrate von 10 kg/min der CSIRO [51] ..................................................... 42
4.15. Versuchsanlage (SDA) mit einem Durchmesser von 3 m und einer Schlackenrate von 100 kg/min der CSIRO [52] ..................................................... 42
4.18. Siemens VAI Vorversuche trockene Granulation von Hochofenschlacke in Redcar (UK) [53] ..................................................... 45
4.19. Siemens Vorversuche zur trockene Granulation von Hochofenschlacke in Vitkovice (CZ) [53] ..................................................... 45
4.20. Optischer Vergleich des Granulationsproduktes aus Vitkovice mit konventionellem Hüttensand [53] .................................................. 46
4.21. Prozessschema der trockenen Granulation mit Wärmerückgewinnung der Firma Siemens VAI [53] .................................................. 46
4.22. Prozessübersicht der Firma Siemens VAI einer möglichen Integrierung eines exemplarischen 1 t/min Modells zur trockenen Granulation von Hochofenschlacke in ein Hüttwerk [53] .................................................. 47

5.1. Aufstellungsplan der Technikumsanlage ........................................ 48
5.2. Kippvorgang des Schlackenkübelns in die Technikumsanlage .......... 49
5.3. Granulationsvorgang am Dreheller der Technikumsanlage .......... 50
5.4. Einzelversuchsablauf der Technikumsanlage ............................... 51
5.5. Granulationsprodukt der Technikumsanlage .................................. 51

6.1. Bilanzgrenze der energetischen Betrachtung der Technikumsanlage [57] ........ 53
6.2. Ideale Bilanzströme der energetischen Betrachtung des Granulators .......... 54
6.3. Bilanzströme des Granulators inklusive Verluste .......................... 54
6.4. Messpunkte des Granulators aus dem Rohrleitungs- und Instrumentenfließbild des der Technikumsanlage ...................................... 56
6.5. Eingangslufttemperaturmessung in den drei Verteilerringen am Granulatorboden der Technikumsanlage .............................. 57
6.6. Messaufbau und -punkte des Quotientenpyrometer und der IR-Kamera im Granulator der Technikumsanlage .............................. 58
6.7. Messaufbau und -lanze des Hochtemperaturanemometers (HTA) .......... 58
6.9. Stationäre Durchflussmessung in der Granulatorenleitung der Technikumsanlage ................................................................. 60
6.10. Analysfenster ibaAnalyzer der relevanten Messsignale für die Messdatenauswertung ................................................................. 61
6.11. Stationärer Zustand beim Granulationsprozess ................................ 61
6.12. Sankey-Diagramm der Wärmeströme eines Einzelversuches .............. 63
6.13. Berechnete Wirkungsgrade der Wärmeübertragung von Schlacke zur Luft der durchgeführten Versuche .................................. 65

8.1. Einflussparameter eines Hüttenerwerkes auf die Eigenschaften ungemahlenen Hüttensandes nach [61] .......................................... 70
# Tabellenverzeichnis


3.2. Einfluss der Basizität auf die Eigenschaften von Hochofenschlacke nach [15, 19] 11
3.4. Grenzwerte von Hüttensand für den Einsatz in der Zementindustrie ................. 18
3.5. Zusammenfassung der Granulationsverfahren und Energierückgewinnungsverfahren nach [27] ................................................................. 31

4.2. Energiebilanz des Granulationsverfahrens der CSIRO [14] .............................. 43
4.3. Machbarkeitsstudie der Firma Siemens VAI des Granulationsverfahrens nach [54] ......................................................................................... 47

6.2. Auflistung der Ein- und Ausgangsströme des Granulators und deren messtechnische Erfassung ................................................................. 56
6.3. Excel-Vorlage der Messdatenerfassung für die Bestimmung des Wirkungsgrades der Wärmeübertragung von Schlacke zur Luft der Versuchs anlage .......... 62
6.4. Zusammenfassung der Messdaten zur Berechnung des Wirkungsgrades der Wärmeübertragung von Schlacke zur Luft der Versuchs anlage ............ 63
6.5. Zusammenfassung der berechneten Wirkungsgrade der durchgeführten Versuche zur trockenen Granulation ................................. 65
6.6. Vergleich der Wirkungsgrade der Konkurrenzverfahren anhand von Literaturwerten mit den Versuchsergebnissen ........................... 65

7.1. Vergleich der Wirkungsgrade der Konkurrenzverfahren anhand von Literaturwerten mit den Versuchsergebnissen .............................. 68

A.1. Messroutine HTA Schwerlinienverfahren ...................................................... II
A.2. Messroutine HTA Log-linear Verfahren ....................................................... III

B.1. Rohrleitungs- und Instrumentenfließbild der Technikumsanlage ...................... IV

C.1. Datenzusammenfassung Kampagne 01 Versuch 05 ........................................ V
C.2. Datenzusammenfassung Kampagne 02 Versuch 03 ....................................... VI
C.3. Datenzusammenfassung Kampagne 03 Versuch 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
### Schwerlinienverfahren + Wichtungsfaktor - Volumenstrom

Schwerliniendurchmesser: $D/\bar{D}$

**Abstand der Schwerlinie von der Rückwand**: $\frac{1}{2} \left( 1 - \sqrt{\frac{2 i - 1}{2 i}} \right)$

Abstand der Schwerlinie von der Rückwand: $v/\bar{v}$

**Strömungsgeschwindigkeit** $v$ [m/s]

\[
g_i = \frac{A_i}{A} \quad \bar{v}_m = \sum_{i=1}^{n} v_i \cdot g_i \quad A = \frac{n \cdot (D^2 - d^2)}{4}
\]

### Betriebspunkt XY

<table>
<thead>
<tr>
<th>Schwerlinien durchmesser [mm]</th>
<th>Fläche [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D$</td>
<td>0,0503</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordnungszahl von außen gezählt</th>
<th>$n$</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anzahl der Kreisringe</th>
<th>$A$</th>
<th>0,503</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fläche [m²]</th>
</tr>
</thead>
</table>

### Tabelle A.1.: Messroutine HTA-Schwerlinienverfahren

<table>
<thead>
<tr>
<th>i</th>
<th>Schwerlinien durchmesser [mm]</th>
<th>Länge [mm]</th>
<th>Abstand</th>
<th>Geschwindig-keit $v$ [m/s]</th>
<th>Wichtungs- faktor $g_i$</th>
<th>Geschwindig- keit $v$ [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>758,9</td>
<td>0,0503</td>
<td>20,5</td>
<td>0,1</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>669,3</td>
<td>0,1508</td>
<td>65,3</td>
<td>0,3</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>565,7</td>
<td>0,2513</td>
<td>117,2</td>
<td>0,5</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>438,2</td>
<td>0,3519</td>
<td>180,9</td>
<td>0,7</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>253,0</td>
<td>0,4524</td>
<td>273,5</td>
<td>0,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>526,5</td>
<td></td>
<td>926,5</td>
<td>0,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>619,1</td>
<td></td>
<td>719,1</td>
<td>0,7</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>682,8</td>
<td></td>
<td>782,8</td>
<td>0,5</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>734,7</td>
<td></td>
<td>734,7</td>
<td>0,3</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>779,5</td>
<td></td>
<td>779,5</td>
<td>0,1</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$v_m$ [m/s]</th>
<th>#DIV/0!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$V$ [m³/h]</th>
<th>#DIV/0!</th>
</tr>
</thead>
</table>

mittlere Strömungsgeschwindigkeit [m/s]

Volumenstrom in [m³/h]
Log-linear - Volumenstrom

Bei der Wahl dieser Wandabstände entfällt eine Wichtung von Teilflächen.

Beispiel: Betriebspunkt XY

<table>
<thead>
<tr>
<th>Abstand Rückwand [mm]</th>
<th>Geschwindigkeit (v_{\text{horizontal}}) [m/s]</th>
<th>Geschwindigkeit (v_{\text{vertical}}) [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25,7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107,9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>256,6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>543,4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>692,1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>774,3</td>
<td></td>
</tr>
</tbody>
</table>

Strömungsgeschwindigkeit \(v\) [m/s]

<table>
<thead>
<tr>
<th>Geschwindigkeit (v_{\text{gesamt}}) [m/s]</th>
<th>mittlere Strömungsgeschwindigkeit [m/s]</th>
<th>Volumenstrom in [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>
B. Rohrleitungs- und Instrumentenfließbild  
Technikumsanlage

Tabelle B.1.: Rohrleitungs- und Instrumentenfließbild der Technikumsanlage
C. Datenzusammenfassung zur Berechnung des Wirkungsgrades

Tabelle C.1.: Datenzusammenfassung Kampagne 01 Versuch 05

<table>
<thead>
<tr>
<th>Eingang</th>
<th>$\Delta T$</th>
<th>$m$ [kg/s]</th>
<th>$cp$ [kJ/kg*K]</th>
<th>$Q$ [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1448,20</td>
<td>0,31</td>
<td>1,08</td>
<td>495,7</td>
</tr>
<tr>
<td>Luft</td>
<td>30,37</td>
<td>1,20</td>
<td>1,02</td>
<td>37,2</td>
</tr>
<tr>
<td>Wasser</td>
<td>25,10</td>
<td>3,24</td>
<td>4,18</td>
<td>339,4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>872,3</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgang</th>
<th>$\Delta T$</th>
<th>$m$ [kg/s]</th>
<th>$cp$ [kJ/kg*K]</th>
<th>$Q$ [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>100,00</td>
<td>0,31</td>
<td>1,08</td>
<td>34,2</td>
</tr>
<tr>
<td>Luft</td>
<td>226,84</td>
<td>1,20</td>
<td>1,02</td>
<td>277,7</td>
</tr>
<tr>
<td>Wasser</td>
<td>28,90</td>
<td>3,24</td>
<td>4,18</td>
<td>390,8</td>
</tr>
<tr>
<td>Verluste</td>
<td></td>
<td></td>
<td></td>
<td>169,6</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>872,3</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K01/V05</th>
<th>$\Delta T$ [$^\circ$C]</th>
<th>$m$ [kg/s]</th>
<th>$cp$ [kJ/kg*K]</th>
<th>$\Delta Q$ [kJ/s]</th>
<th>$\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1348,2</td>
<td>0,31</td>
<td>1,08</td>
<td>461,4</td>
<td>0,52</td>
</tr>
<tr>
<td>Luft</td>
<td>196,5</td>
<td>1,20</td>
<td>1,02</td>
<td>240,5</td>
<td></td>
</tr>
</tbody>
</table>

Import: 872,3 kJ/s  
Export: 872,3 kJ/s
### Tabelle C.2.: Datenzusammenfassung Kampagne 02 Versuch 03

**K02/V03**

<table>
<thead>
<tr>
<th>Eingang</th>
<th>ΔT [°C]</th>
<th>( \dot{m} ) [kg/s]</th>
<th>( cp ) [kJ/(kg*K)]</th>
<th>Q [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1429,40</td>
<td>0,36</td>
<td>1,08</td>
<td>553,1</td>
</tr>
<tr>
<td>Luft</td>
<td>105,07</td>
<td>1,71</td>
<td>1,02</td>
<td>183,7</td>
</tr>
<tr>
<td>Wasser</td>
<td>35,87</td>
<td>5,98</td>
<td>4,18</td>
<td>896,3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>1633,1</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgang</th>
<th>ΔT [°C]</th>
<th>( \dot{m} ) [kg/s]</th>
<th>( cp ) [kJ/(kg*K)]</th>
<th>Q [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>100,00</td>
<td>0,36</td>
<td>1,08</td>
<td>38,7</td>
</tr>
<tr>
<td>Luft</td>
<td>294,66</td>
<td>1,71</td>
<td>1,02</td>
<td>515,1</td>
</tr>
<tr>
<td>Wasser</td>
<td>38,37</td>
<td>5,98</td>
<td>4,18</td>
<td>958,7</td>
</tr>
<tr>
<td>Verluste</td>
<td></td>
<td></td>
<td></td>
<td>120,5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>1633,1</strong></td>
</tr>
</tbody>
</table>

**K02/V03**

<table>
<thead>
<tr>
<th>ΔT [°C]</th>
<th>( \dot{m} ) [kg/s]</th>
<th>( cp ) [kJ/(kg*K)]</th>
<th>( \Delta Q ) [kJ/s]</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1329,40</td>
<td>0,36</td>
<td>1,08</td>
<td>514</td>
</tr>
<tr>
<td>Luft</td>
<td>189,59</td>
<td>1,71</td>
<td>1,02</td>
<td>331</td>
</tr>
</tbody>
</table>

**Import: 1633,1 kJ/s**

**Export: 1633,1 kJ/s**
### Tabelle C.3.: Datenzusammenfassung Kampagne 03 Versuch 10

**K03/V10**

<table>
<thead>
<tr>
<th></th>
<th>$\Delta T$ [°C]</th>
<th>$\dot{m}$ [kg/s]</th>
<th>$cp$ [kJ/kg*K]</th>
<th>$Q$ [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1338,90</td>
<td>0,35</td>
<td>1,08</td>
<td>508,0</td>
</tr>
<tr>
<td>Luft</td>
<td>126,41</td>
<td>1,58</td>
<td>1,02</td>
<td>203,7</td>
</tr>
<tr>
<td>Wasser</td>
<td>29,50</td>
<td>3,99</td>
<td>4,18</td>
<td>491,5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>1203,2</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\Delta T$ [°C]</th>
<th>$\dot{m}$ [kg/s]</th>
<th>$cp$ [kJ/kg*K]</th>
<th>$Q$ [kJ/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>100,00</td>
<td>0,35</td>
<td>1,08</td>
<td>37,9</td>
</tr>
<tr>
<td>Luft</td>
<td>303,15</td>
<td>1,58</td>
<td>1,02</td>
<td>488,6</td>
</tr>
<tr>
<td>Wasser</td>
<td>31,87</td>
<td>3,99</td>
<td>4,18</td>
<td>530,9</td>
</tr>
<tr>
<td>Verluste</td>
<td></td>
<td></td>
<td></td>
<td><strong>145,8</strong></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>1203,2</strong></td>
</tr>
</tbody>
</table>

**K03/V10**

<table>
<thead>
<tr>
<th></th>
<th>$\Delta T$ [°C]</th>
<th>$\dot{m}$ [kg/s]</th>
<th>$cp$ [kJ/kg*K]</th>
<th>$\Delta Q$ [kJ/s]</th>
<th>$\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlacke</td>
<td>1238,9</td>
<td>0,35</td>
<td>1,09</td>
<td>474,4</td>
<td>0,60</td>
</tr>
<tr>
<td>Luft</td>
<td>176,7</td>
<td>1,58</td>
<td>1,02</td>
<td>284,8</td>
<td></td>
</tr>
</tbody>
</table>

**Import: 1203,2 kJ/s**

- Schlacke: 508,0 kJ/s
- Luft: 203,7 kJ/s
- Wasser: 491,5 kJ/s

**Export: 1203,2 kJ/s**

- Schlacke: 37,9 kJ/s
- Luft: 488,6 kJ/s
- Wasser: 530,9 kJ/s
- Verluste: 145,8 kJ/s