Masterarbeit

Machbarkeitsstudie eines Ethanol-betriebenen Hochtemperaturbrennstoffzellensystems als Range Extender

erstellt in Zusammenarbeit mit der

AVL List GmbH

Vorgelegt von:
Klemens Lichtenberger, BSc
0735188

Betreuer/Gutachter:
assoz. Prof. Dipl.-Ing. Dr. mont. Edith Bucher
Dipl.-Ing. (FH) Michael Reißig

Leoben, Juni 15
EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche erkenntlich gemacht habe.

AFFIDAVIT

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume.

SPERRVERMERK

VORWORT

DANKSAGUNG

Ich möchte mich bei assoz. Prof. Dipl.-Ing. Dr. mont. Edith Bucher herzlich für die unkomplizierte Betreuung und die präzise und umgehende Durchsicht der Masterarbeit bedanken.

Mein Dank gilt auch Dipl.-Ing. (FH) Michael Reißig, der es mir ermöglichte meine Masterarbeit bei AVL zu schreiben und mit somit einen Einblick in die Brennstoffzellenentwicklung ermöglichte.

Ganz besonderer Dank gilt meiner Familie, meinen Kommilitonen und meinen Freunden, die mich im Verlauf meines Studiums in jeglicher Hinsicht unterstützt hat.

Außerdem möchte ich Michael Seidl für die Durchführung und Datenaufbereitung der Startbrenner Versuche danken. Ein weiterer Dank geht an Dipl.-Ing. Dr. mont. Hannes Kern. Unter seiner Leitung konnte am Lehrstuhl für Thermoprozesstechnik an der Montanuniversität Leoben kurzfristig die Bestimmung des Flammpunkts durchgeführt werden.

Schlussendlich möchte ich mich auch bei allen anderen AVL Mitarbeitern bedanken, die mir während meiner Arbeit vor Ort geholfen haben.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>EINLEITUNG</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Mobilität</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Ausgangssituation</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Problemstellung und Zielsetzung</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>THEORETISCHE GRUNDLAGEN</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Brennstoffzellen</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Brennstoff</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Reformierung</td>
</tr>
<tr>
<td></td>
<td>2.3.1</td>
<td>Katalytische partielle Oxidation (CPOX)</td>
</tr>
<tr>
<td></td>
<td>2.3.2</td>
<td>Dampfreformierung (SR)</td>
</tr>
<tr>
<td></td>
<td>2.3.3</td>
<td>Verdampfen des Brennstoffs</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>Anwendungsmöglichkeiten der Brennstoffzelle</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>Aktuelle Fahrzeugmarktsituation</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>VERSUCHE ETHANOL REFORMER</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>Versuchsaufbau und Messtechnik</td>
</tr>
<tr>
<td></td>
<td>3.1.1</td>
<td>Reformer</td>
</tr>
<tr>
<td></td>
<td>3.1.2</td>
<td>Energiebilanz Reformer/Verdampfen Aquanol 40/60</td>
</tr>
<tr>
<td></td>
<td>3.1.3</td>
<td>Isolierung und Heizbänder</td>
</tr>
<tr>
<td></td>
<td>3.1.4</td>
<td>Brennstoffpumpe, Wasserpumpe und Verdampfer</td>
</tr>
<tr>
<td></td>
<td>3.1.5</td>
<td>Druck- und Temperaturmessung</td>
</tr>
<tr>
<td></td>
<td>3.1.6</td>
<td>Mikro Gaschromatograph (GC)</td>
</tr>
<tr>
<td></td>
<td>3.1.7</td>
<td>Rußmessung</td>
</tr>
<tr>
<td></td>
<td>3.1.8</td>
<td>Sicherheit</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Durchführung</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>Testreihe Lambdavariation</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Testreihe Leistungsvariation</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>Testreihe Variation Rezirkulationsrate</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>Testreihe Brennstoffvariation</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>VERSUCHE STARTBRENNER</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Aufbau</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Testreihe Leistungsvariation</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>Testreihe Brennstoffvariation</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

4.4 Flammpunktbestimmung.. 28

5 ERGEBNISSE / DISKUSSION..30
 5.1 Ethanol Reformer und Vergleich mit Simulation Matlab/Simulink 30
 5.1.1 Messungen Gaschromatograph... 40
 5.2 Startbrenner... 43
 5.2.1 Flammpunktbestimmung... 44

6 ZUSAMMENFASSUNG UND AUSBlick...45

7 VERZEICHNISSE ...48
 7.1 Abkürzungsverzeichnis.. 48
 7.2 Literaturverzeichnis... 49
 7.3 Abbildungsverzeichnis.. 51
 7.4 Tabellenverzeichnis.. 53

ANHANG... I
Kurzfassung

Fossile Treibstoffe haben sich aufgrund ihrer hohen Energiedichte und weltweiten Verfügbarkeit durchgesetzt und bilden die Basis unserer täglichen Mobilität. Die begrenzten Ressourcen veranlassen uns mit alternativen Treibstoffen zu experimentieren und neue Möglichkeiten der Fortbewegung zu erfinden.

Darüber hinaus wurde untersucht, ob der Startbrenner des Brennstoffzellensystems mit den hohen Wassergehalten im Treibstoff noch zuverlässig zündet und das System auf die für die Reformierung erforderliche Temperatur bringen kann. Es ist zu erwarten, dass nach weiterführenden Untersuchungen und entsprechender Weiterentwicklung der Wirkungsgrad des mit Ethanol betriebenen Brennstoffzellensystems noch gesteigert werden kann.
Abstract

Feasibility study of ethanol-operated solid oxide fuel cell system as range extender

Fossil fuels have established themselves because of their high energy density and their global availability and form the basis of our daily mobility. The limited resources force us to experiment with alternative fuels and to invent new ways of transport.

An existing auxiliary power unit (APU) was powered with diesel and investigated if ethanol can be used as fuel. A reformer was set up on a testbed and experiments were performed with pure ethanol. The main variations were the air-fuel ratio, the recirculation rate of the anode exhaust gas and the power. The product gas was in each case examined for its components and it showed in certain areas of the catalytic partial oxidation a considerable hydrogen yield. When the load of the reformer changed soot formation was observed.

Additionally it was investigated whether steam reforming with the existing set up is possible or whether further adjustments should be made. In this case ethanol was mixed in varying proportions with water and used as fuel. The results have been validated within a parallel masterthesis using a simulation of the reformer and the entire APU in the program MathWorks Matlab/Simulink.

Further it was examined whether the startup burner of the APU can ignite the fuel with those high amounts of water in ethanol and whether it can still heat up the system to the required temperature. It is to be expected that after additional investigations and adequate improvement of the APU the efficiency can be further increased.
1 Einleitung

1.1 Mobilität

Die Umwelt fordert von unserer Gesellschaft ein Umdenken in dieser Hinsicht. Um eine gleichbleibende Verfügbarkeit von Kohle, Öl und Gas zu gewährleisten und dem zusätzlichen Bedarf aufstrebender Wirtschaften gerecht zu werden sind neue kostenintensive Technologien notwendig (Fracking, Fördern von Ölsanden), die vermehrt Auswirkungen auf die Umwelt haben. Kohlenstoff, der über viele Millionen Jahre in Form von fossilen Brennstoffen gebunden wurde, wird jetzt in einer vergleichsweise kurzen Zeit durch Verbrennungsprozesse freigesetzt. Die Umweltauswirkungen dieser in geologischen Zeiträumen „sofortigen“ Freisetzung von CO\textsubscript{2} führen zu einem stetig messbaren Anstieg der CO\textsubscript{2} Konzentration in der Atmosphäre und diese verursacht laut den führenden Klimaforschern einen Anstieg der Jahresdurchschnittstemperatur – kurz: Klimawandel [1, 2].

Welche Mobilitätslösungen können diesen Ansprüchen gerecht werden?

Es ist heute bereits möglich mit Elektrofahrzeugen lokal emissionsfrei zu fahren. In einer Gesamtbilanz ist aber auch die Stromherkunft miteinzubeziehen. In Österreich, der Schweiz und in nördlichen Teilen Europas ist es aus ökologischer Sicht derzeit besser ein Elektrofahrzeug als ein vergleichbares Diesel- oder Benzinfahrzeug zu lenken, weil große Mengen an Strom aus erneuerbaren Energien bereitgestellt werden. In China oder Polen ist es jedoch aufgrund der hohen Anzahl an Kohlekraftwerken ökologisch sinnvoller, ein Fahrzeug mit Verbrennungsmotor zu fahren. In Frankreich stößt man zwar nur wenig CO\textsubscript{2} aus, aber ein Großteil der Stromproduktion findet in Atomkraftwerken statt. Es ist also eine gesonderte Betrachtung für jedes Land bzw. jede Region erforderlich. Verschiedene Leistungsanforderungen und unterschiedliche Reichweiten werden mittelfristig auf jedes Konzept individuell abgestimmt sein müssen. Beginnend von der leichten Elektrifizierung der Antriebe (Mildhybrid) über rein elektrisches Fahren bis hin zur Brennstoffzellenanwendung mit mehreren
hundert Kilometern Reichweite werden in den nächsten Jahren alle Konzepte ihren Weg auf den Markt finden [3, 4, 5].

Bei der gesamtheitlichen Betrachtung ist es unerlässlich, die Herkunft des für die Brennstoffzelle benötigten Wasserstoffs zu berücksichtigen. Derzeit wird nur ein verschwindend geringer Anteil an Wasserstoff nachhaltig erzeugt. 40 % der weltweiten Wasserstoffproduktion fällt als Nebenprodukt bei Raffinerieprozessen wie Methanolherstellung und Benzinreformierung an. Rund 60 % werden großtechnisch erzeugt – hier ist die Reformierung von fossilen Kohlenwasserstoffen am weitesten verbreitet. Für eine nachhaltige Lösung der Energieprobleme ist die Erzeugung von Wasserstoff aus regenerativen Energien unerlässlich [6, 7].

1.2 Ausgangssituation

Da Ethanol in anderen Teilen der Welt (Nord- und Südamerika) großflächig verfügbar ist, und eine insgesamt positivere Umweltbilanz aufweisen kann, gibt es die Überlegung eine APU oder einen Range Extender auch mit Ethanol zu betreiben.

1.3 Problemstellung und Zielsetzung

Die Zielsetzung der vorliegenden Arbeit gliedert sich im Wesentlichen in 2 Teile:

- 1. Teilziel ist die Untersuchung der Ethanol Reformierung unter Variation verschiedener Betriebsbedingungen mit einem vorgegebenen Katalysator. Dabei soll ein optimaler Betriebsbereich gefunden werden, bei dem die Ausbeute an brennbaren Gasen hoch und keine Rußbildung zu erwarten ist. Dabei wird zuerst reinbales Ethanol als Brennstoff eingesetzt und anschließend u.a. eine Mischung aus 40-vol% Ethanol und 60-vol% Wasser.
2 Theoretische Grundlagen

2.1 Brennstoffzellen

Abbildung 2: Aufbau Brennstoffzelle [8]

Wie in Abbildung 3 dargestellt, unterscheiden sich die verschiedenen Brennstoffzellentypen nicht nur hinsichtlich ihrer Zelltemperatur, ihres Wirkungsgrades oder des verwendeten Brennstoffs, sondern weisen auch unterschiedliche Elektrolyte auf. Elektrolyte können Flüssigkeiten (Phosphorsäure), Feststoffe (Keramiken, Polymere) oder auch Schmelzen (Karbonatschmelzen) sein. Brennstoffzellen decken ein sehr breites Leistungsspektrum ab. Zwischen wenigen Watt zum Laden eines Mobiltelefons bis hin zu mehreren Megawatt im Kraftwerksbereich ist alles möglich [8].
Abbildung 3: Mögliche Klassifizierung von Brennstoffzellen [8]

Bei mobilen Brennstoffzellensystemen ist aufgrund der hohen Anzahl an Start- und Stoppzyklen ein besonders robustes Design notwendig. Im Vergleich zu stationären Systemen müssen mobile Systeme sehr oft von Raumtemperatur auf Betriebstemperatur wechseln. Der Aufbau der Brennstoffzelle kann tubulär oder planar sein [1, 10].

2.2 Brennstoff

Die vorliegende Arbeit behandelt neben reinem Ethanol eine Mischung mit noch höherem Wasseranteil als „Aquanol“: 40-vol% Ethanol und 60-vol% Wasser. Der leichteren Lesbarkeit geschuldet, wurde für die Mischung in dieser Arbeit der Ausdruck „Aquanol 40/60“ verwendet.

2.3 Reformierung

Der Begriff Reformierung bezeichnet die Herstellung von Wasserstoff aus einem Brennstoff. Der gewonnene Wasserstoff kann anschließend in der Brennstoffzelle zu elektrischem Strom umgewandelt werden. Das Ziel einer erfolgreichen Reformierung ist also immer eine möglichst hohe
Wasserstoffausbeute. Dabei muss aber auch auf die Rahmenbedingungen geachtet werden, um beispielsweise Rußbildung oder die Bildung unerwünschter Gase zu vermeiden.

Für mobile Anwendungen kann Wasserstoff in Tanks unter hohem Druck sowohl in flüssiger Form als auch als Gas gespeichert werden. Allerdings verflüchtigt sich Wasserstoff als kleinstes und leichtestes Element schnell aus diesen Tanks und ist nicht über einen längeren Zeitraum mit vertretbarem Energieaufwand speicherbar. Daher ist es sinnvoll einen anderen Brennstoff in den Tank des Fahrzeugs zu füllen und den benötigten Wasserstoff direkt dort zu erzeugen, wo er anschließend sofort verwendet werden kann. Die Reformierung erfolgt meist extern, d.h. vor dem Einleiten des Brennstoffs in die Brennstoffzelle. Im Falle der Direktmethanolbrennstoffzelle bzw. der keramischen Hochtemperaturbrennstoffzelle mit Betriebstemperatur ≥ 800°C kann die Reformierung auch direkt an der Elektrode erfolgen [13].

Wie in Abbildung 4 dargestellt, können 3 verschiedenen Arten der Reformierung unterschieden werden:

- partielle Oxidation (Partial Oxidation)
- Dampfreformierung (Steam Reforming)
- autotherme Reformierung (Autothermal Reforming)

Die autotherme Reformierung kann als Kombination von Dampfreformierung und partieller Oxidation verstanden werden. Die benötigte Wärmemenge für das Ablauf der Reaktion ist hierbei minimal, weil sich die Reaktion praktisch durch die Oxidation selbst mit der entsprechenden Wärme versorgt.

Abbildung 4: Einteilung Reformierung [6]

2.3.1 **Katalytische partielle Oxidation (CPOX)**

Die partielle Oxidation von Ethanol kann sowohl endotherm als auch exotherm ablaufen [6]:

\[
\text{CH}_3\text{CH}_2\text{OH} + 0,5 \text{O}_2 \rightarrow 2 \text{CO} + 3 \text{H}_2, \quad \Delta H_r = +57 \frac{\text{kJ}}{\text{mol}} \quad \text{(Formel 1)}
\]

\[
\text{CH}_3\text{CH}_2\text{OH} + \text{O}_2 \rightarrow \text{CO}_2 + \text{CO} + 3 \text{H}_2, \quad \Delta H_r = -226 \frac{\text{kJ}}{\text{mol}} \quad \text{(Formel 2)}
\]
Kapitel 2 – Theoretische Grundlagen

\[
\text{CH}_3\text{CH}_2\text{OH} + 1,5 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2, \quad \Delta H_r = -509 \frac{\text{kJ}}{\text{mol}} \quad (\text{Formel 3})
\]

Der Parameter \(\Delta H_r \) bezeichnet hierbei die Reaktionsenthalpie. Je mehr Sauerstoff für die Oxidation verwendet wird, desto exothermer wird die Reaktion und dementsprechend steigt auch die Temperatur. Der Vorteil der partiellen Oxidation liegt also darin, dass Wärme entsteht und möglicherweise genutzt werden kann, um andere Bereiche des Brennstoffzellensystems vorzuwärmen. Im Gegensatz zur Dampfreformierung muss hierbei kein Wasser verdampft werden. Bei vollständiger Oxidation ist die Wärmeausbeute am höchsten. Dieser Zustand wird zum Beispiel im Startbrenner angestrebt [6].

\[
\text{CH}_3\text{CH}_2\text{OH} + 3 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2\text{O}, \quad \Delta H_r = -1368 \frac{\text{kJ}}{\text{mol}} \quad (\text{Formel 4})
\]

Eine charakteristische Größe für diese Art der Reformierung ist das O/E Verhältnis. Hierbei wird die Anzahl von Sauerstoff- und Ethanolmolekülen ins Verhältnis zueinander gesetzt (mol O\textsubscript{2}/mol Ethanol). Das Verhältnis gibt also an, wie viel Sauerstoff für die Reaktion zur Verfügung steht. Bei Temperaturen über 600°C und einem O/E Verhältnis kleiner 1,5 sind hohe Wasserstoffausbeuten zu erwarten. Bei einem O/E Verhältnis kleiner als 0,8 kann es hingegen zur Rußbildung kommen [6].

Auch die Art des Katalysatormaterials hat einen Einfluss auf das Reformierungsprodukt. Als Beispiel können gewisse Katalysatoren die Methanbildung hemmen und so ein reineres Produkt im Vergleich zu herkömmlichen Katalysatoren erzeugen. Dadurch kann die Reformierung bei geringerer Temperatur und energetisch auf einem günstigeren Niveau ablaufen.

2.3.2 **Dampfreformierung (SR)**

Im Gegensatz zur partiellen Oxidation ist bei der Dampfreformierung Wasser erforderlich. Es können theoretisch aus jedem Ethanolmolekül bis zu 6 Wasserstoffmoleküle entstehen. Dampfreformierung ist ein endothermer Prozess [6]:

\[
\text{CH}_3\text{CH}_2\text{OH} + 3 \text{H}_2\text{O} \rightarrow 2 \text{CO}_2 + 6 \text{H}_2, \quad \Delta H_r = +347 \frac{\text{kJ}}{\text{mol}} \quad (\text{Formel 5})
\]

Diese Reaktion bringt die höchsten Wasserstoffausbeuten mit sich. Die benötigte Energie muss aber von außen zugeführt werden. Somit muss von Fall zu Fall entschieden werden, welche Art der Reformierung für den geplanten Verwendungszweck am besten geeignet ist.

Bei niedrigen Temperaturen sind als Reaktionsprodukte CH\textsubscript{4}, CO\textsubscript{2} und eine eher geringe Wasserstoffausbeute zu erwarten. Wird die Temperatur auf über 550°C erhöht, sinkt der CH\textsubscript{4}-Anteil.
zugunsten der Wasserstoffausbeute deutlich ab. Außerdem steigt über 500°C der Gehalt an CO stark an. Dieses Verhalten kann auf die Wassergas-Shift Reaktion zurückgeführt werden. In diesem Fall muss eine geeignete Brennstoffzelle ausgewählt werden, welche durch CO nicht geschädigt wird [6].

\[
\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2, \quad \Delta H_r = -41 \text{ kJ mol}^{-1} \quad \text{(Formel 6)}
\]

2.3.3 Verdampfen des Brennstoffs

![Abbildung 5: Schnitt Reformer und Nachbrenner in der APU](image)

2.4 Anwendungsmöglichkeiten der Brennstoffzelle
An die elektrischen Systeme in einem heute produzierten Fahrzeug werden stetig steigende Anforderungen gerichtet. Die Aufrechterhaltung des erwarteten Fahrzeugkomforts, wie etwa eine Standklimatisierung, oder das Fernsteuern bestimmter Funktionen mithilfe des Mobilfunkdatennetzes erfordern über einen längeren Zeitraum verhältnismäßig große Mengen an Strom bei abgestelltem
Motor. Das ist mitunter ein Grund warum in neuen Fahrzeuggenerationen von einem 12 Volt Bordnetz auf 48 Volt umgestellt wird.

Die Fahrer von Schwerfahrzeugen lassen, insbesondere in den USA, im Standbetrieb oft auch über Nacht den Motor laufen, um die Schlafkabine zu klimatisieren. Speziell in diesem Bereich könnte eine Brennstoffzelle (SOFC-APU) große ökologische und auch ökonomische Einsparung bedeuten, weil sich damit ein höherer Wirkungsgrad realisieren lässt. Dazu ist auch noch eine erheblich geringere Lärmbelastung zu erwarten.

2.5 Aktuelle Fahrzeugmarktsituation

Wie in Tabelle 1 dargestellt, war das meistverkaufte Elektrofahrzeug (BEV – battery electric vehicle) in Europa im Jahr 2014 der Nissan LEAF. Dahinter folgt ein Modell von Renault (ZOE) und auf Platz 3 rangiert Tesla mit dem Model S [14].

Tabelle 1: Absatzzahlen Europa und Fahrzeugbasispreis Deutschland (Stand 25. April 2015)

<table>
<thead>
<tr>
<th>Modell</th>
<th>Verkaufte Fahrzeuge</th>
<th>Basispreis inkl. MwSt. in Deutschland [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan LEAF</td>
<td>14 658</td>
<td>29 690 (inkl. Batteriekauf)</td>
</tr>
<tr>
<td>Renault ZOE</td>
<td>11 227</td>
<td>21 700 (exkl. Batteriemiete)</td>
</tr>
<tr>
<td>Tesla Model S</td>
<td>8 734</td>
<td>76 240 (inkl. Batteriekauf)</td>
</tr>
</tbody>
</table>

Abbildung 6: Toyota Mirai (links) und Hyundai ix35 Fuel Cell (rechts) [15]

In Abbildung 7 ist anhand des Toyota Mirai dargestellt, dass der Wasserstoff in Tanks unter hohem Druck mitgeführt und im Brennstoffzellenstack in elektrische Energie umgewandelt wird. Mit dieser Energie wird die mitgeführte Batterie aufgeladen bzw. je nach Bedarf direkt der Elektromotor des Fahrzeugs angetrieben. Zusätzlich zu einem BEV sind hier Wasserstoff und die Brennstoffzelle mizuzuführen.
Abbildung 7: Schema Toyota Mirai [16]

3 Versuche Ethanol Reformer

3.1 Versuchsaufbau und Messtechnik

Abbildung 8: Versuchsaufbau MS2 Prüfstand

In Abbildung 8 ist im Vordergrund links der Micro Gaschromatograph mit Notebook und der Trägergasflasche (Helium) zu sehen. Rechts im Bild befindet sich der Kondensatabscheider und in der Mitte ist der Reformer in der Isolation mit Halbschalen zu sehen. Im Hintergrund befindet sich der Abgaskühler und links davon der Wasserverdampfer.
3.1.1 Reformers

Der erste Versuchsaufbau war ein einfaches 3-teiliges Rohr (Segmente 1-3) aus vorangegangen Versuchen. Entsprechend den Anforderungen wurde der Reformer mit weiteren Temperaturmessstellen, einer Druckmessstelle und einem Glühstift angepasst. Die Verrohrung wurde dabei so gewählt, dass im Prüfstand bei Bedarf weitere Versuche aufgebaut werden können.

Wie in Abbildung 9 und Abbildung 10 dargestellt, strömt der vorgewärmte Gasstrom radial in die erste Reaktionskammer (Segment 1, Abbildung 9 links; Abbildung 10 rechts) ein. Der Brennstoff wird axial mit einer Kraftstoffpumpe auf ein Vlies eingebracht und verdampft dort. Durch die Verdampfungswärme von Ethanol ist hier die niedrigste Temperatur im gesamten Reaktor zu erwarten. Am anderen Ende des Reformers (Segment 3, Abbildung 9, Abbildung 10) befindet sich der Gasaustritt.

Abbildung 9: Reformers Seitenansicht 1

Die Temperaturmessstellen wurden händisch an den Reformer geschweißt. Hier musste aufgrund der Feinheit der Temperaturmessstellen mit besonderer Sorgfalt gearbeitet werden, um Gasdichtheit zu erreichen, und notfalls die Schweißnaht mehrmals nachgeschweißt werden.

Abbildung 10: Reformer Seitenansicht 2

3.1.2 Energiebilanz Reformer/Verdampfen Aquanol 40/60

In Tabelle 2 sind die Massenströme des Ethanol Reformers zusammengefasst. In Abbildung 11 sind die einzelnen Massenströme schematisch dargestellt. Einzelne Versuche wurden ohne Rezirkulation gefahren – daher ist \(m_{\text{Rezirkulation}} \) nur strichliert eingezeichnet. \(\dot{Q}_{\text{zu}} \) bezeichnet die Wärme aus dem Nachbrenner, die an den Reformer übertragen wird. Durch die zylindrische Form des Reformers ergibt sich ein von allen Seiten gleichmäßiger Wärmeeintrag.

Die Ethanol- und Wassermischung wird zuerst verdampft und anschließend weiter aufgeheizt und überhitzt. Die notwendige Energie hierfür wird aus dem Nachbrenner bereitgestellt. Der Wärmbedarf für eine Zielleistung von 1 kW\(_{\text{elektrisch}}\) (=384 g Ethanol/h) wurde über die Wärmekapazitäten und Verdampfungswärmen berechnet und mittels einer Simulation validiert.

Tabelle 2: Massenströme Ethanol Reformer

<table>
<thead>
<tr>
<th>Kürzel</th>
<th>Name</th>
<th>Eigenschaften</th>
<th>Spezies</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\text{Wasser}} + m_{\text{Ethanol}})</td>
<td>Ethanol und Wasser</td>
<td>flüssig, 20°C</td>
<td>C(_2)H(_6)O, H(_2)O</td>
<td>(\sim 384 \text{ g/h für 1 kW } P_{\text{elektrisch}})</td>
</tr>
<tr>
<td>(m_{\text{Rezirkulation}})</td>
<td>Gaszufuhr</td>
<td>gasförmig, 375-400°C</td>
<td>H(_2), CO(_2), N(_2), H(_2)O</td>
<td>simuliertes Rezirkulationsgas</td>
</tr>
<tr>
<td>(m_{\text{Dampf}})</td>
<td>Gasaustritt</td>
<td>gasförmig, ca. 750°C</td>
<td>H(_2), CO(_2), CO, CH(_4), N(_2),</td>
<td>Summe aller Massenströme</td>
</tr>
</tbody>
</table>

Formel 7 stellt die Abhängigkeit der Temperatur von der Wärmekapazität für die Spezies i, \(\overline{c_p_i} \), dar [18]:

\[
c_p_i = A_i + B_i T + C_i T^2 + D_i T^3 + E_i T^4
\]

(Formel 7)

Durch Integration über den Temperaturbereich und Division durch die Temperaturdifferenz kann eine mittlere Wärmekapazität \(\overline{c_p_i} \) berechnet werden – siehe Formel 8

\[
\overline{c_p_i} = \frac{\int_{T_1}^{T_2} A_i + B_i T + C_i T^2 + D_i T^3 + E_i T^4 \, dt}{T_2 - T_1}
\]

(Formel 8)

In Formel 9 ist die Berechnung für flüssiges Ethanol im Temperaturbereich von 25°C bis 90°C dargestellt

\[
\overline{c_p_E} = \frac{A_E T + \frac{B_E T^2}{2} + \frac{C_E T^3}{3} + \frac{D_E T^4}{4} + \frac{E_E T^5}{5}}{363 - 298} \bigg|_{298}^{363} = 125,43 \frac{J}{mol \, K}
\]

(Formel 9)

Die mittlere Wärmekapazität \(\overline{c_p_h} \) kann nun mit der pro Stunde zu verdampfenden Menge des jeweiligen Brennstoffs und der Temperaturdifferenz \(\Delta T \), multipliziert werden. Man erhält den Wärmebedarf in J/h. Eine Division durch 3600 ergibt J/s also Watt.

\[
\dot{Q}_{zu_E} = \frac{n_{Ethanol} \cdot (\overline{c_p_{fl}} \cdot \Delta T_{fl} + \Delta H_v + \overline{c_p_{g}} \cdot \Delta T_{g})}{3600} \quad [Watt]
\]

(Formel 10)
Abbildung 11: Bilanzierung Reformer Segment 1

In Tabelle 3 sind die Ergebnisse der Berechnung zu sehen. Für 1 kW elektrische Zielleistung müssen 8,3 mol Ethanol und 40,5 mol Wasser verdampft und überhitzt werden. Wie erwartet, ist ein Großteil (rund 58 %) der Gesamtennergie für das Verdampfen von Wasser erforderlich. Obwohl die Verdampfungsenthalpien von Wasser (40,7 kJ/mol) und Ethanol (38,8 kJ/mol) ähnlich groß sind, ergibt sich durch die unterschiedliche Molmasse, das Mischungsverhältnis und die unterschiedliche Dichte, für die Verdampfung von Ethanol ein viel geringerer Wärmebedarf – rund 11 % der Gesamtennergie. Insgesamt beläuft sich der Wärmebedarf auf 781 W.

Tabelle 3: Wärmebedarf Verdampfen von Aquanol 40/60

<table>
<thead>
<tr>
<th></th>
<th>Wärmebedarf [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser von 25°C auf 90°C erhitzen</td>
<td>55</td>
</tr>
<tr>
<td>Wasser verdampfen</td>
<td>458</td>
</tr>
<tr>
<td>Wasserdampf von 90°C auf 350°C erhitzen</td>
<td>103</td>
</tr>
<tr>
<td>Summe Wasser</td>
<td>616</td>
</tr>
<tr>
<td>Ethanol von 25°C auf 90°C erhitzen</td>
<td>19</td>
</tr>
<tr>
<td>Ethanol verdampfen</td>
<td>90</td>
</tr>
<tr>
<td>Ethanol dampf von 90°C auf 350°C erhitzen</td>
<td>57</td>
</tr>
<tr>
<td>Summe Ethanol</td>
<td>165</td>
</tr>
<tr>
<td>Summe Wasser + Ethanol</td>
<td>781</td>
</tr>
</tbody>
</table>

3.1.3 Isolierung und Heizbänder

Bevor die elektrischen Heizbänder um den Reformer gewickelt werden können, muss der Reformer elektrisch isoliert werden. Dazu kann ein Glasfaserklebeband und Glaswolle verwendet werden. Anschließend können die Heizbänder sorgfältig um die entsprechenden Reaktorsegmente gewickelt werden.

Der Reformer in der APU wird vom Abgas des Brennstoffzellenstacks aufgeheizt. Im hier beschriebenen Versuchsauflauf ist jedoch kein Stack vorgesehen. Aufgrund des fehlenden Abgases ist daher eine zusätzliche elektrische Heizung in Form von Heizbändern notwendig. Folgende Heizbänder (Horst HSQ 900°C) wurden verwendet:

- **HC 1**: 4 m Heizband (700 W – vor Segment 1) vom Wasserverdampfer und der Gaszuleitung bis zum radialen Eintritt in den Reformer
- **HC 2**: 2,1 m Heizband (370 W – um Segment 1 und 2) um das Verdampfvlies und die 1. Reaktionszone
- **HC 3**: 1 m Heizband (170 W – um Segment 3) im Bereich um den Katalysator

Die Temperaturregelung der Heizbänder erfolgt über Labview (siehe 3.1.5).

Nachdem die Heizbänder einmalig die vorgesehene hohe Temperatur erreicht haben und entsprechend ausgedämpft sind, kann sofort von Raumtemperatur auf über 650°C aufgeheizt werden.

3.1.4 Brennstoffpumpe, Wasserpumpe und Verdampfer

Die Wasserpumpe (KNF Lab Simdos 10) war vor den Verdampfer geschaltet und gewährleistete eine ausreichende Wasserversorgung. Anfangs war die Pumpe manuell zu bedienen. Da sich die erforderliche Wassermenge im Versuchsablauf ständig ändert, war eine Fernsteuerung der Pumpe über Labview sinnvoll und beschleunigte den Versuch. Die Pumpe wurde in weiterer Folge über einen
0-10 V Analoganschluss (NI-Analogmodul 9205) angesteuert, die Kalibration erfolgte jedoch weiterhin an der Pumpe selbst.

Ein plötzlich auftretender Schaden an der Pumpe „Motor-Error 1“ war auf Verunreinigung in der Wasserzufuhr zurückzuführen. Inzwischen konnte der Versuch mit einer Ersatzpumpe (KNF Lab Simdos 10) nach dem Anpassen der maximalen Förderleistung (1200 ml/h) in Labview problemlos fortgeführt werden.

Ein Verdampfer (aDrop Direktverdampfer aTHMOS) am Prüfstand wurde dazu verwendet um die Rezirkulation zu simulieren. Das Wasser für die Reformierung wurde im realen Betrieb in Form von Dampf in den Reformer eingebracht. Im kleineren Maßstab des gegenständlichen Versuchs wurde das Wasser vollständig verdampft, überhitzt und anschließend mit der berechneten Gasmischung vermischt.

3.1.5 Druck- und Temperaturmessung

Über den gesamten Reformer sind insgesamt 12 Temperaturmessstellen verbaut. Zusätzlich wurde ein mobiler Temperatursensor angeschlossen. Dieser kann nach Bedarf im Prüfstand montiert werden und dort Auskunft über die Temperatur geben. Tabelle 4 gibt eine Übersicht über die verbauten Temperaturmessstellen. Die Gradangaben beziehen sich auf die Einbaulage im Reformer aus Sicht des Gasausstritts (0° oben, 90° rechts, 180° unten usw.).

Tabelle 4: Übersicht Temperaturmessstellen

<table>
<thead>
<tr>
<th>Bezeichnung am Prüfstand</th>
<th>Bereich</th>
<th>Position</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T800</td>
<td>Zuleitung</td>
<td>Gaseintritt</td>
<td>regelt HC 1</td>
</tr>
<tr>
<td>T801</td>
<td>3.Segment 90°</td>
<td>nach Katalysator</td>
<td>regelt HC 2</td>
</tr>
<tr>
<td>T802</td>
<td>1.Segment 0°</td>
<td>Einlass (Vlies)</td>
<td>regelt HC 3</td>
</tr>
<tr>
<td>T803</td>
<td>1.Segment 90°</td>
<td>Einlass (Vlies)</td>
<td></td>
</tr>
<tr>
<td>T804</td>
<td>1.Segment 180°</td>
<td>Einlass (Vlies)</td>
<td></td>
</tr>
<tr>
<td>T805</td>
<td>2.Segment 90°</td>
<td>Mitte</td>
<td></td>
</tr>
<tr>
<td>T806</td>
<td>3.Segment 0°</td>
<td>im Katalysator</td>
<td></td>
</tr>
<tr>
<td>T807</td>
<td>3.Segment 0°</td>
<td>im Katalysator</td>
<td></td>
</tr>
<tr>
<td>T808</td>
<td>3.Segment 90°</td>
<td>vor Katalysator</td>
<td></td>
</tr>
<tr>
<td>T809</td>
<td>3.Segment 90°</td>
<td>im Katalysator</td>
<td></td>
</tr>
<tr>
<td>T810</td>
<td>Abgasoehr</td>
<td>Gasaustritt</td>
<td></td>
</tr>
<tr>
<td>T811</td>
<td>Abgasoehr</td>
<td>Gas nach Kühlung</td>
<td></td>
</tr>
<tr>
<td>T812</td>
<td>Variabel</td>
<td>Variabel</td>
<td>mobiler Sensor</td>
</tr>
</tbody>
</table>
Ein Drucksensor wurde nach dem Reformer verbaut um den Druck zu überwachen. Im weiteren Verlauf soll auch beim Gaseinlass ein Drucksensor verbaut werden um das Verbrennen von Ethanol frühzeitig erkennen zu können und entsprechend vermeidende Maßnahmen zu setzen.

3.1.6 Mikro Gaschromatograph (GC)

Die Gaszusammensetzungen aus dem Reformierungsprozess wurden von einem Mikro-GC (Agilent 490 Micro GC) gemessen. Dieses muss mindestens 24 h vor Beginn der Messung aufgeheizt werden, um die Messsäulen entsprechend von Störstoffen zu befreien. Im laufenden Betrieb sind sämtliche Erschütterungen zu vermeiden, da diese die Messergebnisse verfälschen können.

Tabelle 5: Zusammensetzung Prüfgas

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 %</td>
<td>H₂</td>
</tr>
<tr>
<td>14 %</td>
<td>CO</td>
</tr>
<tr>
<td>10 %</td>
<td>CO₂</td>
</tr>
<tr>
<td>3 %</td>
<td>CH₄</td>
</tr>
<tr>
<td>100 ppm</td>
<td>O₂</td>
</tr>
<tr>
<td>Rest</td>
<td>He</td>
</tr>
</tbody>
</table>

Die Messung der Gaszusammensetzung kann unter Umständen zu Problemen führen. Normalerweise wird Wasserstoff mithilfe der veränderten Wärmeleitfähigkeit eines Träergases bestimmt. Argon eignet sich sehr gut für die Wasserstoffdetektion, allerdings kann dadurch die Messung anderer Gase ungenauer werden. Im Versuch wurde Helium als Träergas verwendet. Die Mischung von Wasserstoff
und Helium weist in der Wärmeleitfähigkeit keinen linearen Verlauf auf und führt zu inversen S-förmigen Peaks wie in Abbildung 13 gezeigt. Eine Aussage über den genauen Wasserstoffgehalt war im Brennstoffzellenlabor so nicht zu erreichen. Als Trägergas kann auch eine Mischung aus 8,5 % H₂ und 91,5 % Helium verwendet werden. Damit wird der unstetige Bereich in der Wärmeleitfähigkeit überwunden und es entstehen negative Peaks – siehe Abbildung 14 [19].

Abbildung 13: inverse H₂ Peaks [19]

Abbildung 14: negative H₂ Peaks [19]

Inverse Peaks traten im Versuch ab ca. 20 % H₂ auf. Es wurde in der Auswertung trotzdem ein Weg gefunden mit dem der Wasserstoff ausreichend genau bestimmt werden konnte (siehe 5 Ergebnisse / Diskussion).

Der zur Verfügung gestellte Katalysator von Lieferant A weist eine Edelmetallbeschichtung auf und passt aufgrund seiner Abmessungen nicht in den Reformer, also wurde er mithilfe einer Säge passend zu einer Zylinderform zugeschnitten (Länge 40 mm, Durchmesser 61 mm). Das Volumen beträgt daher 116 899 mm³.

◊ 800 Nl/h Gas → ca. 6 800 /h
◊ 1900 Nl/h Gas → ca. 16 300 /h
◊ 3000 Nl/h Gas → ca. 25 700 /h

3.1.7 Rußmessung

Nach Verfügbarkeit wird ein Gerät zur Rußmessung (AVL MircoSootSensor) eingesetzt, um im laufenden Betrieb die Rußbildung zu messen. Der MSS wurde im Haus entwickelt und besteht aus 2 Aufbauten. Erstens die Verdünnungseinheit, die einen Druckluftanschluss mit maximal 1,1 bar erfordert. Den zweiten Teil bildet die Rußmessung selbst. Hierfür werden die Rußpartikel in der
Messzelle durch einen Laser angeregt und über die Schwingungen können Rückschlüsse auf die Rußmenge gezogen werden.

Für den Abgasschlauch ist die Verwendung von Tygon-Schläuchen (Innenseite weist eine sehr geringe Rauigkeit auf) unerlässlich. Ansonsten können sich Rußpartikel an der Innenseite des Schlauches festsetzen und dadurch das Messergebnis verfälschen.

3.1.8 Sicherheit

Im Prüfstand befindet sich ein fest verbauter CO-Warner. Der Messwert kann am angeschlossenen PC, über den auch der Prüfstand gesteuert wird, abgelesen werden. Sollte die Konzentration im Prüfstand über einen bestimmten Wert steigen, werden automatisch alle Prüfstände mit einem inerten Gas (zum Beispiel Arcal F5, 5 % H₂ und 95 % N₂) gespült und die Stromzufuhr umgehend unterbrochen. Um Sicherheitsabschaltungen zu vermeiden, bzw. um milde Maßnahmen treffen zu können, ist zusätzlich noch ein Handsensor über dem Reformer angebracht. Dieser gibt bereits bei 30 ppm ein optisches und akustisches Alarmsignal ab. Zusätzlich muss bei außerordentlichen Arbeiten am laufenden Prüfstand noch ein Handwarngerät in der Nähe des Kopfes getragen werden, weil die zu erwartenden Abgase mehr als 10 % CO enthalten können und im Falle einer Undichtigkeit ein großes Sicherheitsrisiko darstellen.

3.2 Durchführung

Im Reformierungsprozess soll zunächst ein Referenzpunkt bestimmt werden, bei dem die Reformierung stabil (keine großen Druck- oder Temperaturschwankungen) läuft und ein Produkt mit ausreichender Qualität (hoher Heizwert - H₂/CO, wenig O₂) zu erwarten ist. Von diesem Referenzpunkt ausgehend werden dann jeweils einzelne Parameter in separaten Testreihen variiert, um Aussagen über den Einfluss des jeweiligen Parameters treffen zu können.

Aus Vorversuchen mit Diesel sind folgende Werte bekannt, welche als Ausgangspunkt für die Ethanol Reformierung dienen:

- 1 kW elektrische Leistung am fiktiven SOFC-Stack (Pziel)
- 35 % Gesamtwirkungsgrad (ETA)
- 70 % Fuel utilization (fuelut)
- 40% Rezirkulationsrate (rezirate)
- 0,35 Lambda

Mit den entsprechenden Daten für Brennstoff und Luft [20]:

- 26,8 MJ/kg Ethanol (HW)
- Molmasse Ethanol 46,07 g/mol
- Dichte der Luft: 1,293 kg/m³
- Luftbedarf von Ethanol 9 kg/kg (Luftratio)
Es ergibt sich aus Formel 11 die erforderliche Brennstoffmenge (fuelmass):

\[
\text{fuelmass} \left[\frac{g}{h} \right] = \frac{P_{ziel} \cdot 3600 \cdot 100}{\eta \cdot \text{HW}} \tag{Formel 11}
\]

Aus Formel 12 ergibt sich die erforderliche Luftmenge (airmass):

\[
\text{airmass} \left[\frac{N_l}{h} \right] = \frac{P_{ziel} \cdot 3600 \cdot 100 \cdot \text{Luftratio} \cdot \text{Lambda}}{\eta \cdot \text{HW} \cdot \rho} \tag{Formel 12}
\]

Aus Formel 13 ergibt sich die erforderliche Stickstoffmenge (N2mass):

\[
\text{N}_2\text{mass} \left[\frac{N_l}{h} \right] = \frac{P_{ziel} \cdot 3600 \cdot 100 \cdot \text{Luftratio} \cdot \text{Lambda}}{\eta \cdot \text{HW} \cdot \rho} \cdot 0.79 \cdot \text{rezirate} \tag{Formel 13}
\]

Aus Formel 14 ergibt sich die erforderliche Masse Wasser (H2Omass):

\[
\text{H}_2\text{Omass} \left[\frac{g}{h} \right] = \frac{P_{ziel} \cdot 3600 \cdot 100 \cdot 3 \cdot \text{fuelut} \cdot \text{rezirate} \cdot 18}{\eta \cdot \text{HW}} \cdot \text{Mmassen} \tag{Formel 14}
\]

Aus Formel 15 ergibt sich die erforderliche Masse an Wasserstoff (H2mass):

\[
\text{H}_2\text{mass} \left[\frac{N_l}{h} \right] = \frac{P_{ziel} \cdot 3600 \cdot 100 \cdot 3 \cdot (1 - \text{fuelut}) \cdot \text{rezirate} \cdot 22.414}{\eta \cdot \text{HW} \cdot \text{Mmassen}} \tag{Formel 15}
\]

Aus Gründen der Sicherheit wurde auf die Zudosierung von H₂ verzichtet. Der Versuch wird am Referenzwert gestartet, der aus der Dieselreformierung bekannt ist – siehe Tabelle 6. Für die Berechnung wird eine Last von 1 kW am Stack angenommen.

Tabelle 6: Startwerte für erste Versuche

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda</td>
<td>0,35</td>
</tr>
<tr>
<td>Rezirkulationsverhältnis</td>
<td>0,4</td>
</tr>
<tr>
<td>Brennstoffmenge</td>
<td>384 g/h</td>
</tr>
<tr>
<td>Brennstoff</td>
<td>100 % Ethanol</td>
</tr>
</tbody>
</table>

3.3 Testreihe Lambdavariation

Lambda soll in Bereichen der katalytischen partiellen Oxidation von 0,2 bis 0,4 variiert werden. In höheren Bereichen des Lambdawertes ist die obere Temperaturgrenze des Katalysators sehr schnell erreicht. Die maximale Arbeitstemperatur des verwendeten Katalysators liegt bei 950°C. Höhere Temperaturen zerstören den Katalysator.
Tabelle 7: Startwerte Lambdavariation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lama7</td>
<td>0,43</td>
<td>187</td>
<td>241</td>
<td>1407</td>
<td>216</td>
<td>0,58</td>
<td>1,16</td>
<td>1,29</td>
</tr>
<tr>
<td>Lama6</td>
<td>0,4</td>
<td>187</td>
<td>224</td>
<td>1182</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>1,20</td>
</tr>
<tr>
<td>Lama5</td>
<td>0,38</td>
<td>187</td>
<td>213</td>
<td>1123</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>1,14</td>
</tr>
<tr>
<td>Lama1</td>
<td>0,35</td>
<td>187</td>
<td>196</td>
<td>1034</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>Lama2</td>
<td>0,3</td>
<td>187</td>
<td>168</td>
<td>886</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>0,90</td>
</tr>
<tr>
<td>Lama3</td>
<td>0,25</td>
<td>187</td>
<td>140</td>
<td>739</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>0,75</td>
</tr>
<tr>
<td>Lama4</td>
<td>0,2</td>
<td>187</td>
<td>112</td>
<td>591</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>0,60</td>
</tr>
</tbody>
</table>

3.4 Testreihe Leistungsvariation

Für eine elektrische Last am Stack von 1 kW werden 384 g Ethanol pro Stunde verwendet. Die Leistung soll sowohl nach oben als auch nach unten hin variiert werden um den Reformierungsprozess genauer zu charakterisieren – siehe Tabelle 8

Tabelle 8: Startwerte Leistungsvariation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>0,7</td>
<td>131</td>
<td>137</td>
<td>724</td>
<td>110</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>P.2</td>
<td>0,8</td>
<td>149</td>
<td>157</td>
<td>827</td>
<td>125</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>P.3</td>
<td>0,9</td>
<td>168</td>
<td>177</td>
<td>931</td>
<td>141</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>P.4</td>
<td>1,0</td>
<td>187</td>
<td>196</td>
<td>1034</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>P.5</td>
<td>1,2</td>
<td>224</td>
<td>236</td>
<td>1241</td>
<td>188</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>P.6</td>
<td>1,4</td>
<td>261</td>
<td>275</td>
<td>1448</td>
<td>220</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>P.7</td>
<td>1,6</td>
<td>299</td>
<td>314</td>
<td>1655</td>
<td>251</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Es zeigt sich, dass ausgehend vom Referenzpunkt eine Leistung von 0,7 – 1,6 kW problemlos am Prüfstand eingestellt werden kann. Leistungen über 1,6 kW verursachen durch ungünstige Anordnung des CO-Sensors im Prüfstand erhöhte CO-Konzentrationen und können zum Abschalten aller Prüfstände führen. Daher wurde auf höhere Leistung verzichtet. Nach unten hin ist der Versuch mit 0,7 kW begrenzt, weil die verwendeten Massflowcontroller eine gewisse Mindestmenge an Gas erfordern und diese bereits im Bereich über 0,7 kW liegt.

3.5 Testreihe Variation Rezirkulationsrate

Die Rezirkulationsrate gibt an, welcher Anteil vom Anodenabgas zurück in den Reformer geführt und nicht im Nachbrenner oxidiert wird. Sie beeinflusst die Temperatur, die Gaszusammensetzung und auch die Stabilität des Reformierungsprozesses, da N₂ als Träergas wirken kann. Der Startwert liegt bei 0,4.
Nach oben wurde die Rezirkulationsrate mit 0,6 begrenzt. Bei höheren Rezirkulationsraten sinkt der Wirkungsgrad der Brennstoffzelle, weil sehr viel N₂ im Kreis gepumpt wird. Gleichzeitig wird der Wasserdampf aus der Rezirkulation benötigt, um genügend H₂ für die Reformierung zur Verfügung zu stellen. Nach unten ist die Rezirkulationsrate durch die verwendeten Massflowcontroller für N₂ mit 0,25 begrenzt.

Tabelle 9: Startwerte Variation Rezirkulationsrate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R.1</td>
<td>0,6</td>
<td>187</td>
<td>196</td>
<td>1182</td>
<td>235</td>
<td>0,63</td>
<td>1,26</td>
<td>1,05</td>
</tr>
<tr>
<td>R.2</td>
<td>0,55</td>
<td>187</td>
<td>196</td>
<td>1145</td>
<td>216</td>
<td>0,58</td>
<td>1,16</td>
<td>1,05</td>
</tr>
<tr>
<td>R.3</td>
<td>0,5</td>
<td>187</td>
<td>196</td>
<td>1108</td>
<td>196</td>
<td>0,53</td>
<td>1,05</td>
<td>1,05</td>
</tr>
<tr>
<td>R.4</td>
<td>0,45</td>
<td>187</td>
<td>196</td>
<td>1071</td>
<td>176</td>
<td>0,47</td>
<td>0,95</td>
<td>1,05</td>
</tr>
<tr>
<td>R.5</td>
<td>0,4</td>
<td>187</td>
<td>196</td>
<td>1034</td>
<td>157</td>
<td>0,42</td>
<td>0,84</td>
<td>1,05</td>
</tr>
<tr>
<td>R.6</td>
<td>0,35</td>
<td>187</td>
<td>196</td>
<td>997</td>
<td>137</td>
<td>0,37</td>
<td>0,74</td>
<td>1,05</td>
</tr>
<tr>
<td>R.7</td>
<td>0,3</td>
<td>187</td>
<td>196</td>
<td>960</td>
<td>118</td>
<td>0,32</td>
<td>0,63</td>
<td>1,05</td>
</tr>
<tr>
<td>R.8</td>
<td>0,25</td>
<td>187</td>
<td>196</td>
<td>923</td>
<td>98</td>
<td>0,26</td>
<td>0,53</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Die Rezirkulation am Prüfstand wird über genau dosierte Gasmengen simuliert. Es wird also kein Abgas wieder in den Reformer eingeführt. So kann die Temperatur und die Masse des rezirkulierten Gases leichter variiert werden. Durch das Heizband HC 1 mit 700 W Leistung wird das Rezirkulationsgas entsprechend vorgeheizt und auch die Wärmefuhr simuliert.

3.6 Testreihe Brennstoffvariation

Bei den Testreihen 1-4 wurde ausschließlich reines Ethanol (E100) verwendet um Referenzwerte zu erhalten. Im späteren Verlauf wurde der Wasseranteil im Brennstoff schrittweise auf bis zu 60 vol-% Wasser erhöht – siehe Tabelle 10. Die Versuche mit reinem Ethanol werden zusätzlich mit Wasserdampf gefahren um genügend Wasserstoffatome für die Reformierung in das System einzubringen. Bei höheren Konzentrationen von Wasser im Brennstoff ist dies nicht notwendig. Der Verdampfer kann abgeschaltet werden.

Tabelle 10: Startwerte Brennstoffvariation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W4030</td>
<td>40</td>
<td>187</td>
<td>168</td>
<td>633</td>
<td>404</td>
<td>1,08</td>
<td>2,16</td>
<td>0,90</td>
</tr>
<tr>
<td>W4035</td>
<td>40</td>
<td>187</td>
<td>196</td>
<td>739</td>
<td>404</td>
<td>1,08</td>
<td>2,16</td>
<td>1,05</td>
</tr>
<tr>
<td>W4038</td>
<td>40</td>
<td>187</td>
<td>213</td>
<td>802</td>
<td>404</td>
<td>1,08</td>
<td>2,16</td>
<td>1,14</td>
</tr>
<tr>
<td>W5030</td>
<td>50</td>
<td>187</td>
<td>168</td>
<td>633</td>
<td>606</td>
<td>1,62</td>
<td>3,24</td>
<td>0,90</td>
</tr>
<tr>
<td>W5035</td>
<td>50</td>
<td>187</td>
<td>196</td>
<td>739</td>
<td>606</td>
<td>1,62</td>
<td>3,24</td>
<td>1,05</td>
</tr>
<tr>
<td>W5040</td>
<td>50</td>
<td>187</td>
<td>224</td>
<td>844</td>
<td>606</td>
<td>1,62</td>
<td>3,24</td>
<td>1,20</td>
</tr>
<tr>
<td>W6035</td>
<td>60</td>
<td>187</td>
<td>196</td>
<td>739</td>
<td>909</td>
<td>2,43</td>
<td>4,86</td>
<td>1,05</td>
</tr>
</tbody>
</table>
4 Versuche Startbrenner

4.1 Aufbau

Abbildung 16: Startbrenner

4.2 Testreihe Leistungsvariation

Tabelle 11: Startbrenner Leistungsvariation

<table>
<thead>
<tr>
<th>Brennerleistung</th>
<th>Menge reines Ethanol</th>
<th>(\lambda=1,3)</th>
<th>(\lambda=2,0)</th>
<th>(\lambda=3,0)</th>
<th>erforderliche Luftmenge (NL/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 kW</td>
<td>7200 kJ/h 268,7 g/h</td>
<td>2431</td>
<td>3740</td>
<td>5610</td>
<td>2431</td>
</tr>
<tr>
<td>3 kW</td>
<td>10800 kJ/h 403,0 g/h</td>
<td>3647</td>
<td>5610</td>
<td>8415</td>
<td>3647</td>
</tr>
<tr>
<td>4 kW</td>
<td>14400 kJ/h 537,3 g/h</td>
<td>4862</td>
<td>7480</td>
<td>11220</td>
<td>4862</td>
</tr>
<tr>
<td>5 kW</td>
<td>18000 kJ/h 671,6 g/h</td>
<td>6078</td>
<td>9350</td>
<td>14025</td>
<td>6078</td>
</tr>
<tr>
<td>6 kW</td>
<td>21600 kJ/h 806,0 g/h</td>
<td>7293</td>
<td>11220</td>
<td>16830</td>
<td>7293</td>
</tr>
<tr>
<td>7 kW</td>
<td>25200 kJ/h 940,3 g/h</td>
<td>8509</td>
<td>13090</td>
<td>19635</td>
<td>8509</td>
</tr>
<tr>
<td>8 kW</td>
<td>28800 kJ/h 1074,6 g/h</td>
<td>9724</td>
<td>14960</td>
<td>22440</td>
<td>9724</td>
</tr>
<tr>
<td>9 kW</td>
<td>32400 kJ/h 1209,0 g/h</td>
<td>10940</td>
<td>16830</td>
<td>25245</td>
<td>10940</td>
</tr>
<tr>
<td>10 kW</td>
<td>36000 kJ/h 1343,3 g/h</td>
<td>12155</td>
<td>18700</td>
<td>28050</td>
<td>12155</td>
</tr>
</tbody>
</table>
Aus früheren Projekten der AVL List GmbH mit ähnlichen Startbrennern ist bekannt, dass der Versuch mit einem Luftüberschuss von 1,3 gestartet werden kann. Wird die Temperatur im laufenden Betrieb zu heiß, muss der Luftüberschuss von 2 auf 3 erhöht werden, um Schäden zu vermeiden.

4.3 Testreihe Brennstoffvariation

Tabelle 12: Startbrenner Brennstoffvariation

<table>
<thead>
<tr>
<th>Test 2 (E100-E40 -auf Basis von 5 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 vol-% Ethanol 0 vol-% Wasser</td>
</tr>
<tr>
<td>90 vol-% Ethanol 10 vol-% Wasser</td>
</tr>
<tr>
<td>80 vol-% Ethanol 20 vol-% Wasser</td>
</tr>
<tr>
<td>70 vol-% Ethanol 30 vol-% Wasser</td>
</tr>
<tr>
<td>60 vol-% Ethanol 40 vol-% Wasser</td>
</tr>
<tr>
<td>50 vol-% Ethanol 50 vol-% Wasser</td>
</tr>
<tr>
<td>40 vol-% Ethanol 60 vol-% Wasser</td>
</tr>
</tbody>
</table>

4.4 Flammpunktbestimmung

Abbildung 18: Flammponentbestimmung nach Pensky Martens
5 Ergebnisse / Diskussion

In diesem Abschnitt werden nur die wichtigsten Messwerte aufgelistet. Weiterführende Messwerte sind im Anhang zu finden.

5.1 Ethanol Reformer und Vergleich mit Simulation Matlab/Simulink

Abbildung 19: Simulation Verdampfer und Reformer in Matlab/Simulink [21]

Abbildung 20: Validierung Lambdavarlation (E100; P = 1 kW; R = 0,4)

Es ist deutlich zu sehen, dass H₂-Konzentrationen über 25 % mit dem vorhandenen Träergas im GC schlecht messbar sind, denn sowohl in der Simulation als auch in der Berechnung von H₂R treten höhere Konzentrationen auf. In der Auswertung am GC sind dabei auch inverse H₂-Peaks zu sehen, die von der Software ohne Korrekturmaßnahmen falsch interpretiert werden - Abbildung 21. In der Simulation entsteht bei geringerem Luftüberschuss mehr H₂ und auch CH₄. Im experimentellen Versuch wird kaum CH₄ gemessen, weil der Katalysator die Bildung verhindert. Bei einem Lambda von 0,43 lag die Temperatur im Katalysator schon bei 950°C. Die Rezirkulation wurde deshalb in diesem Punkt auf 0,55 erhöht um den Katalysator nicht irreparabel zu beschädigen. Darum ergeben sich für Lambda = 0,43 andere Prozessverhältnisse in Tabelle 7. Die Raumgeschwindigkeit variiert in diesem Versuch zwischen 7 600 und 18 000 /h.

Da in der Simulation kein elementarer Sauerstoff gebildet wird, wurde in den Diagrammen auf die Darstellung verzichtet. Bei allen Versuchen zeigten sich doch hin und wieder Konzentrationen von bis zu 0,7 % O₂. Da der GC unter anderem mit Umgebungsluft kalibriert wurde, kann dieser Wert auch Argon beinhalten. Als inertes Edelgas ist es aber in solch geringen Mengen für die Brennstoffzelle nicht relevant. Die N₂-Konzentration im Produktgas (bis zu 60 %) wurde hier aufgrund der Übersichtlichkeit nicht eingezeichnet.

Durch den höheren Massenstrom in und durch den Reformer verändern sich die Strömungsverhältnisse. Die Strömungsgeschwindigkeit im Reformer verdoppelt sich mit der Verdopplung der Massenströme. Gleichzeitig sinkt jedoch die Verweilzeit im Reformer und damit auch im Katalysator. Die geänderten Durchmischungsverhältnisse sorgen also für Schwankungen in der Produktgaszusammensetzung. Die Raumgeschwindigkeit liegt für größere Leistungen bei ca. 25 000 /h.

Abbildung 23: Validierung Variation Rezirkulationsrate (E100; P = 1 kW; Lambda = 0,35)

Eine Rezirkulationsrate von 0,25 wurde nochmals bei deutlich höherer Temperatur untersucht. Es zeigt sich, dass bei 860 statt 630°C vor dem Katalysator keine messbar höhere H₂-Ausbeute zu erwarten ist.

Der nächste Schritt in der Simulation des Brennstoffzellensystems war die Modellierung eines Verdampfers für Aquanol 40/60. Dieser wurde komplett neu aufgebaut. Der Wärmebedarf für die Verdampfung aus der Simulation stimmt mit den berechneten Werten überein [21].

Die Simulation eines gesamten Brennstoffzellensystems beinhaltet neben den genannten Teilen auch Nachbrenner, Brennstoffzellenstack, Wärmetauscher und Gebläse. Der Aufbau der Simulation ist in Abbildung 24 dargestellt.
Abbildung 24: Simulation SOFC System in Matlab/Simulink [21]

Abbildung 25: Temperaturen bei Variation der Rezirkulationsrate

In Abbildung 25 sind die Temperaturen im Reformer über die Variation der Rezirkulationsrate dargestellt. T808 ist die Temperatur vor dem Katalysator aus dem Versuch. T801 zeigt die Temperatur nach dem Katalysator. T_out ist die simulierte Temperatur am Austritt. Es ist zu sehen, dass im Katalysator eine exotherme Reaktion stattfindet. Die Unterschiede der Austrittstemperaturen sind bis

Abbildung 26: Betrieb mit E100 - Temperaturverteilung

Die Simulation zeigt in Abbildung 28 eine deutliche CH₄-Bildung. Im Versuch ist diese nicht zu beobachten. Der Katalysator hemmt die Bildung von CH₄, und wird in der Simulation nicht extra berücksichtigt. In diesem Bereich könnte die Simulation noch näher an die Ergebnisse aus dem experimentellen Versuch angepasst werden. In abgeschwächter Form ist dies auch in Abbildung 27 zu beobachten.
Abbildung 28: Validierung Aquanol 50/50

Abbildung 29: Betrieb mit Aquanol 50/50 – Temperaturverteilung

In Abbildung 30 ist die Rußbildung im Betrieb mit Aquanol 40/60 unter Luftzufuhr dargestellt. In den grünen Bereichen läuft die Reformierung (rund 20 % H₂, pinke Linie) und es konnte keine Rußbildung festgestellt werden. In den roten Bereichen läuft die Reformierung nicht (keine Brennstoffzufuhr) und es kommt zu minimaler Rußbildung (schwarze Linie, ca. 0,05-0,1 mg/m³).

Abbildung 30: Betrieb mit Aquanol 40/60 – teilweise Rußbildung
Aquanol 40/60 konnte mit Lambda = 0,35 reformiert werden. Dabei wurden bei einer Temperatur von 690°C rund 27 % H₂ erzeugt. In den nächsten Schritten wurde die Luftzufuhr verringert und Lambda zwischen 0,3 und 0,4 variiert. Dabei konnten aufgrund der GC-Probleme keine Produktgaszusammensetzungen gemessen werden.

Es sind noch weitere Versuche für die Findung eines optimalen Betriebspunktes erforderlich. Sinnvoll erscheint aus derzeitiger Sicht der Einsatz eines Injektors zur Einbringung von Brennstoff in das System. Durch die Zerstäubung entsteht eine wesentlich größere Oberfläche und der Wärmeübergang kann dadurch signifikant verbessert werden.

Abbildung 31: 2. Generation APU System – Anpassung: keine Rezirkulation
5.1.1 Messungen Gaschromatograph

Der Gaschromatograph benötigt für eine Gasanalyse etwas mehr als 2 Minuten. Die Gaszusammensetzungen zeigen also jeweils eine Momentaufnahme des am Ende der Messleitung ankommenden Produktgases. Der Mittelwert aus je 3 Messungen (rund 7 Minuten) wurde in der Auswertung verwendet. Damit können kurzzeitige Schwankungen eliminiert werden.

Die Messung des Wasserstoffanteils gestaltete sich insbesondere bei hohen Konzentrationen schwierig. Nach Absprache mit Dr. Vincent Lawlor (AVL List GmbH) wurde folgendes Auswertungsschema angewendet:

Die Spezies (CO, CO₂, CH₄, N₂, O₂) im Produktgas wurden am Prüfstand kalibriert und es wurde angenommen, dass von anderen Gasen keine relevanten Mengen zu erwarten sind. Die Summe der fünf Gase wurde berechnet und der Rest als Wasserstoff angenommen. Diese errechnete Wasserstoffkonzentration wurde als „H₂Rest“ also H₂R bezeichnet. Diese Werte sind näher an der Simulation (bezeichnet als H₂sim) als die gemessenen H₂-Werte.

Die ersten Messungen mit dem GC brachten bereits ein sehr gutes Ergebnis (gemessen: 17 % H₂; nominell: 16 % H₂). Im Verlauf der weiteren Messungen kam es allerdings zu folgenden Problemen:

- Die Messgasleitung vom Reformeraufbau zum GC ist eine 1/16 Zoll Leitung und kann somit sehr leicht durch Rußablagerungen verstopfen. Es ist keine zuverlässige Messung der Gaszusammensetzung mehr möglich.
- Der Gasstrom durch die Messgasleitung ist sehr gering. In Folge dessen gibt der Gasstrom sehr schnell seine Wärme an die Umgebung ab und kühlt auf Raumtemperatur ab. Dadurch kann Wasserdampf in der Messgasleitung kondensieren und somit den Gasstrom blockieren.
- Der leichte Überdruck im Reformer reicht nicht aus, um sicherzustellen, dass stets das aktuell erzeugte Gas auf die Zusammensetzung hin untersucht wird. Versuche am Referenzpunkt zeigten auch 5 Minuten nachdem die Brennstoffzufuhr unterbrochen wurde noch H₂ in der Analyse. Dies deutet darauf hin, dass die Gase eine gewisse Zeit brauchen, um vom Reformer zum GC zu gelangen. Um diesem Problem entgegenzuwirken, wurde am GC eine kleine Pumpe mit Kondensatabscheider verbaut. Diese Pumpe soll sicherstellen, dass stets die aktuelle Gaszusammensetzung am GC vorbeigepumpt wird, und bei einer Messinjektion wird dieser Gasstrom kurz in das GC umgeleitet. Bei Versuchen mit laufender Pumpe wurde überdurchschnittlich viel O₂ (bis zu 20 %) im Gas gemessen. Es besteht der Verdacht auf eine Undichtigkeit im Ansaugsystem. Mehrere Schaltabläufe wie folgt erbrachten keine zufriedenstellende Lösung:
 - GC-Pumpe ein, Messung starten, GC-Pumpe laufen lassen
 - GC-Pumpe ein, mit N₂ spülen, GC-Pumpe aus, Messung starten
 - Messung starten, GC-Pumpe nur zum Injektionspunkt einschalten
 - Messung starten, GC-Pumpe zwischendurch zum Spülen einschalten
Als zuverlässigste Methode stellte sich eine kontinuierliche Gasmessung (150 Sekunden Abstand) heraus. Bei nicht erklärbaren Gaszusammensetzungen wurde die Pumpe kurz zum Spülen eingeschaltet. Dazu wurde der Reformer mit 3000 Nl/h N₂ gespült und so leichter Überdruck erzeugt. Die Verunreinigungen lösen sich so teilweise aus der Messgasleistung und es kann wieder eine zuverlässige Gasmessung durchgeführt werden.

Abbildung 32: oben Messgasleitung 1/16”, unten Zwischenstück mit Silikagel

War selbst nach einer Spülung keine aussagekräftige Gasmessung möglich, wurde die Leitung getauscht. Anfangs betrug die Leitungslänge noch ca. 1 m. Nach mehrmaligem Tauschen wurden die Leitungen auf das notwendigste gekürzt – ca. 0,5 m. Zusätzlich wurde die Leitung mittig nach oben gebogen, um etwaigen Kondensattropfen das Abfließen zu erleichtern.

Eine Membran am Agilent Genie-Filter 170 der GC-Pumpe und ein Pumpenschlauch wurden aufgrund von Verschmutzungen ausgetauscht – siehe Abbildung 33 und Abbildung 34.

Abbildung 33: GC-Pumpe Membran alt/neu
Abbildung 34: GC-Pumpe Schlauch alt/neu

Für weitere Reformierungsversuche sollte ein anderes Trägergas (siehe 3.1.6) verwendet werden, welches die Messung von H₂ in höheren Konzentrationen erlaubt und die Sensitivität gegenüber anderen Gasen nicht verringert.

Um weitere Versuche im Bereich der Dampfreformierung (SR) durchzuführen, sollte die Länge der Messgasleitung möglichst kurz gehalten werden. Des Weiteren sollte sie thermisch isoliert oder beheizt werden, um das Auskondensieren zu verhindern.
5.2 Startbrenner

Der jeweilige Brennstoff wurde im Versuch auch mit „E“ und „Anteil Ethanolgehalt“ bezeichnet. E60 steht also für Aquanol 60/40. E100 steht für reines Ethanol.

In Abbildung 35 sind die Versuchsdaten des Startbrenners zu sehen. Es zeigt sich, dass ein Betrieb von 2-10 kW mit reinem Ethanol möglich ist. Bei geringen Leistungen ist zu sehen, dass die Temperatur bei Lambda = 2 weit über 1000°C ansteigt. Die Luftzufuhr wurde auf Lambda = 3 erhöht und die Temperatur pendelte sich zwischen 900 und 950°C ein.

Abbildung 35: Startbrennerversuche E100 (Leistungsvariation)

Die Diagramme der Brennstoffvariationen Aquanol 90/10, 80/20, 70/30 sind im Anhang zu finden. Die Verbrennungstemperatur sinkt mit zunehmendem Wassergehalt, weil die Verdampfungsenergie von Wasser aufgebracht werden muss. Bei Aquanol 70/30 sinkt die Verbrennungstemperatur bei Lambda = 3 auf rund 500°C ab [23].
In Abbildung 36 ist der Startbrennversuch mit Aquanol 60/40 dargestellt. Während die Glühstifte eingeschaltet sind, ist die Verbrennung bei geringem Luftüberschuss möglich. Wird allerdings diese zusätzliche Wärmequelle abgeschaltet, erlischt der Startbrenner nach wenigen Minuten. Ein stabiler Betrieb ist, wenn überhaupt, nur bei Lambda < 1,3 möglich.

Abbildung 36: Startbrennerversuche Aquanol 60/40 5kW

Die Mischung Aquanol 50/50 und Mischungen mit noch höherem Wassergehalt (Aquanol 40/60) können im Startbrenner nicht mehr gezündet werden.

5.2.1 Flammpunktbestimmung

Die Abschätzung des Flammpunktes nach Pensky-Martens liegt bei einem Umgebungsdruck von 1043 mbar bei 23,7°C. Da diese Messung auf ca. 600 m Höhe an der Montanuniversität Leoben mit einem älteren Messgerät durchgeführt wurde, ist dieses Ergebnis als Schätzung zu sehen.

Bei Normaldruck (1013 mbar) erniedrigt sich der Flammpunkt um 0,75°C und liegt somit bei rund 23°C. Damit fällt Aquanol 40/60 im Sinne der Verordnung über brennbare Flüssigkeiten in die Kategorie „brennbare Flüssigkeiten der Gruppe B“ und - da der Flammpunkt über 21°C liegt - in Gefahrenklasse II: entzündlich [24].
6 Zusammenfassung und Ausblick

Tabelle 13: Ergebnisse Reformierung mit Aquanol

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>Lambda</th>
<th>H₂R [%]</th>
<th>O₂ [%]</th>
<th>N₂ [%]</th>
<th>CH₄ [%]</th>
<th>CO [%]</th>
<th>CO₂ [%]</th>
<th>T [°C]</th>
<th>S/E-Verhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquanol 60/40</td>
<td>0,35</td>
<td>30,4</td>
<td>0,7</td>
<td>46,6</td>
<td>0,0</td>
<td>11,1</td>
<td>11,2</td>
<td>659</td>
<td>2,16</td>
</tr>
<tr>
<td>Aquanol 50/50</td>
<td>0,35</td>
<td>29,0</td>
<td>0,8</td>
<td>48,7</td>
<td>0,0</td>
<td>9,0</td>
<td>12,5</td>
<td>554</td>
<td>3,24</td>
</tr>
<tr>
<td>Aquanol 40/60</td>
<td>0,35</td>
<td>27,4</td>
<td>1,4</td>
<td>51,1</td>
<td>0,0</td>
<td>6,7</td>
<td>13,5</td>
<td>562</td>
<td>4,86</td>
</tr>
</tbody>
</table>

Die Rußbildung wurde mit einem AVL MicroSootSensor untersucht. Im stationären Reformierungsbetrieb konnte keine Rußbildung nachgewiesen werden; sehr wohl jedoch im Bereich von Lastwechseln, also beim An- und Abfahren des Versuchs.

Außerdem wurde ein Startbrenner untersucht. Dieser soll im Brennstoffzellensystem in erster Linie den Reformer, aber auch die weiteren Komponenten, auf die erforderliche Temperatur bringen. Dazu sind insbesondere wegen der hohen Verdampfungsenthalpie von Wasser große Heizleistungen notwendig. Es wurden sowohl Versuche mit reinem Ethanol als auch mit Aquanol in verschiedenen Zusammensetzungen durchgeführt. Folgende Schlussfolgerungen konnten gezogen werden:
• Der Startbrenner ist für den Betrieb von 2-10 kW mit reinem Ethanol geeignet.
• Aquanol 60/40 ist im Startbrenner nur unter besonderen Voraussetzungen einsetzbar – es ist ein geringer (λ < 1,3) Luftüberschuss erforderlich. Es kann keine stabile Verbrennung garantiert werden.
• Aquanol 50/50 kann im Startbrenner nicht mehr gezündet werden.
• Aquanol 40/60 enthält noch einen höheren Anteil an Wasser und kann demzufolge auch nicht mehr gezündet werden.

Für weiterführende Untersuchung ist ein praktischer Versuchsauflauf mit einem kompletten Brennstoffzellensystem zu planen und in Betrieb zu nehmen. Die Versuche können mit der Simulation des gesamten Brennstoffzellensystems abgeglichen werden.

Die Simulation kann im Hinblick auf eine Funktion zur Berechnung der Abwärme noch verbessert werden. Zur leichteren Vergleichbarkeit könnte eine Anpassung der Eingabewerte (Masse in Gramm pro Stunde anstatt Normliter pro Stunde) und die automatische Berechnung des Produktgases als trockene Zusammensetzung eingepflegt werden.

Die Rahmenbedingungen für die Ethanol-Reformierung konnten in der vorliegenden Arbeit bereits festgelegt werden. Es ist jedoch unerlässlich weitere Versuche durchzuführen, um einen idealen Betriebspunkt zu finden. Dieser soll eine stabile, möglichst gleichmäßige Temperaturverteilung aufweisen um die Werkstoffe zu schonen und außerhalb der Rußbildungszone liegen.

Anschließend muss das Brennstoffzellensystem an die Bedingungen im Fahrzeug angepasst werden. Es muss unempfindlich gegenüber Temperatur-, Luftdruck- und Luftfeuchteschwankungen sein. Bis zur Marktreife muss gezeigt werden, dass eine Vielzahl an Kaltstarts reibungslos möglich ist und eine Dauerbelastung keine nennenswerten Auswirkungen auf die Zuverlässigkeit und Leistung des Brennstoffzellensystems hat.

Sollte sich die Ethanol-SOFC als sehr effizient und robust herausstellen, könnten damit in Zukunft Range Extender für Elektrofahrzeuge vergleichsweise klimaschonend betrieben werden. Auch eine
Verwendung am LKW als Stromversorgung für Nebenaggregate wie Elektrogeräte oder Klimaanlage im „Idle“ Modus ist vorstellbar und wäre entsprechend umweltfreundlich und leise.

Auch wenn sich für Ethanol-betriebene Brennstoffzellensysteme speziell in Nord- und Südamerika Chancen ergeben, werden sie in Österreich in naher Zukunft keine bedeutende Rolle spielen. Dennoch könnte Österreich mit der Erzeugung von Wasserstoff aus Ethanol die Abhängigkeit vom Import fossiler Brennstoffe verringern, neue Techniktrends aktiv mitgestalten und einen Beitrag zur Reduzierung von Treibhausgasemissionen leisten.
7 Verzeichnisse

7.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Englischer Begriff</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>APU</td>
<td>Auxiliary Power Unit</td>
<td>Hilfsaggregat</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>CPOX</td>
<td>catalytic partial oxidation</td>
<td>katalytische partielle Oxidation</td>
</tr>
<tr>
<td>etc.</td>
<td>et cetera</td>
<td>et cetera</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatograph</td>
<td>Gaschromatograph</td>
</tr>
<tr>
<td>SR</td>
<td>steam reforming</td>
<td>Dampfreformierung</td>
</tr>
<tr>
<td>SOFC</td>
<td>solide oxide fuel cell</td>
<td>Hochtemperaturbrennstoffzelle</td>
</tr>
</tbody>
</table>
7.2 Literaturverzeichnis

7.3 Abbildungsverzeichnis

Abbildung 1: 2. Generation APU System für den Betrieb mit Diesel .. 5
Abbildung 2: Aufbau Brennstoffzelle [8] .. 6
Abbildung 3: Mögliche Klassifizierung von Brennstoffzellen [8] .. 7
Abbildung 5: Schnitt Reformer und Nachbrenner in der APU ... 10
Abbildung 6: Toyota Mirai (links) und Hyundai ix35 Fuel Cell (rechts) [15] 11
Abbildung 7: Schema Toyota Mirai [16] .. 12
Abbildung 8: Versuchsaufbau MS2 Prüfstand .. 13
Abbildung 9: Reformer Seitenansicht 1 .. 14
Abbildung 10: Reformer Seitenansicht 2 .. 15
Abbildung 11: Bilanzierung Reformer Segment 1 ... 17
Abbildung 12: Anordnung Temperaturmessstellen im Versuchsaufbau 20
Abbildung 13: inverse H$_2$ Peaks [19] .. 21
Abbildung 14: negative H$_2$ Peaks [19] .. 21
Abbildung 15: Katalysator Lieferant A .. 21
Abbildung 16: Startbrenner .. 26
Abbildung 17: glühender Startbrenner am Puma - Prüfstand ... 27
Abbildung 18: Flammpunktbestimmung nach Pensky Martens .. 29
Abbildung 20: Validierung Lambdavariation (E100; P = 1 kW; R = 0,4) 31
Abbildung 21: inverser H$_2$-Peak im experimentellen Versuch ... 31
Abbildung 22: Validierung Leistungsvariation (E100; R = 0,4; Lambda = 0,35) 32
Abbildung 23: Validierung Variation Rezirkulationsrate (E100; P = 1 kW; Lambda = 0,35) 33
Abbildung 24: Simulation SOFC System in Matlab/Simulink [21] ... 34
Abbildung 25: Temperaturen bei Variation der Rezirkulationsrate 34
Abbildung 26: Betrieb mit E100 - Temperaturverteilung ... 35
Abbildung 27: Validierung Aquanol 60/40 ... 36
Abbildung 28: Validierung Aquanol 50/50 ... 37
Abbildung 29: Betrieb mit Aquanol 50/50 – Temperaturverteilung ... 37
Abbildung 30: Betrieb mit Aquanol 40/60 – teilweise Rußbildung .. 38
Abbildung 31: 2. Generation APU System – Anpassung: keine Rezirkulation 39
Abbildung 32: oben Messgasleitung 1/16", unten Zwischenstück mit Silikagel 41
Abbildung 33: GC-Pumpe Membran alt/neu ... 41
Abbildung 34: GC-Pumpe Schlauch alt/neu .. 41
Abbildung 35: Startbrennerversuche E100 (Leistungsvariation) .. 43
Abbildung 36: Startbrennerversuche Aquanol 60/40 5kW ... 44
7.4 Tabellenverzeichnis

Tabelle 1: Absatzzahlen Europa und Fahrzeugbasispreis Deutschland (Stand 25. April 2015) 11
Tabelle 2: Massenströme Ethanol Reformer ... 15
Tabelle 3: Wärmebedarf Verdampfen von Aquanol 40/60 .. 17
Tabelle 4: Übersicht Temperatursmessstellen ... 19
Tabelle 5: Zusammensetzung Prüfgas ... 20
Tabelle 6: Startwerte für erste Versuche .. 23
Tabelle 7: Startwerte Lambdavariation ... 24
Tabelle 8: Startwerte Leistungsvariation ... 24
Tabelle 9: Startwerte Variation Rezirkulationsrate ... 25
Tabelle 10: Startwerte Brennstoffvariation ... 25
Tabelle 11: Startbrenner Leistungsvariation .. 27
Tabelle 12: Startbrenner Brennstoffvariation .. 28
Tabelle 13: Ergebnisse Reformierung mit Aquanol ... 45
Raumgeschwindigkeit des Katalysators für die Versuchsreihen mit E100

<table>
<thead>
<tr>
<th>Gasmenge Produkt [Nl/h]</th>
<th>Raumgeschwindigkeit [/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lama7 2181</td>
<td>18658</td>
</tr>
<tr>
<td>Lama6 1973</td>
<td>16876</td>
</tr>
<tr>
<td>Lama5 1923</td>
<td>16447</td>
</tr>
<tr>
<td>Lama1 1876</td>
<td>16046</td>
</tr>
<tr>
<td>Lama2 1720</td>
<td>14714</td>
</tr>
<tr>
<td>Lama3 1310</td>
<td>11210</td>
</tr>
<tr>
<td>Lama4 887</td>
<td>7591</td>
</tr>
<tr>
<td>P.1 1281</td>
<td>10957</td>
</tr>
<tr>
<td>P.2 1490</td>
<td>12749</td>
</tr>
<tr>
<td>P.3 1686</td>
<td>14420</td>
</tr>
<tr>
<td>P.4 1842</td>
<td>15757</td>
</tr>
<tr>
<td>P.5 2231</td>
<td>19086</td>
</tr>
<tr>
<td>P.6 2574</td>
<td>22017</td>
</tr>
<tr>
<td>P.7 2977</td>
<td>25470</td>
</tr>
<tr>
<td>R.1 2038</td>
<td>17430</td>
</tr>
<tr>
<td>R.2 1995</td>
<td>17062</td>
</tr>
<tr>
<td>R.3 1952</td>
<td>16699</td>
</tr>
<tr>
<td>R.4 1921</td>
<td>16436</td>
</tr>
<tr>
<td>R.5 1842</td>
<td>15757</td>
</tr>
<tr>
<td>R.6 1835</td>
<td>15701</td>
</tr>
<tr>
<td>R.7 1789</td>
<td>15303</td>
</tr>
<tr>
<td>R.8 1738</td>
<td>14871</td>
</tr>
<tr>
<td>R.8-2 1722</td>
<td>14726</td>
</tr>
<tr>
<td>Output Lambdavariation</td>
<td>H₂R</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Lama7</td>
<td>18.2</td>
</tr>
<tr>
<td>Lama6</td>
<td>21.0</td>
</tr>
<tr>
<td>Lama5</td>
<td>22.2</td>
</tr>
<tr>
<td>Lama1</td>
<td>24.9</td>
</tr>
<tr>
<td>Lama2</td>
<td>27.3</td>
</tr>
<tr>
<td>Lama3</td>
<td>23.3</td>
</tr>
<tr>
<td>Lama4</td>
<td>13.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Leistungsvariation</th>
<th>H₂R</th>
<th>O₂</th>
<th>N₂</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>24.2</td>
<td>0.6</td>
<td>56.5</td>
<td>0.1</td>
<td>10.6</td>
<td>7.82</td>
</tr>
<tr>
<td>P.2</td>
<td>24.7</td>
<td>0.6</td>
<td>55.5</td>
<td>0.1</td>
<td>11.3</td>
<td>7.65</td>
</tr>
<tr>
<td>P.3</td>
<td>25.0</td>
<td>0.5</td>
<td>55.2</td>
<td>0.1</td>
<td>11.4</td>
<td>7.67</td>
</tr>
<tr>
<td>P.4</td>
<td>23.9</td>
<td>0.6</td>
<td>56.1</td>
<td>0.0</td>
<td>12.2</td>
<td>6.94</td>
</tr>
<tr>
<td>P.5</td>
<td>24.3</td>
<td>0.6</td>
<td>55.6</td>
<td>0.0</td>
<td>12.7</td>
<td>6.68</td>
</tr>
<tr>
<td>P.6</td>
<td>23.8</td>
<td>0.6</td>
<td>56.2</td>
<td>0.0</td>
<td>12.8</td>
<td>6.39</td>
</tr>
<tr>
<td>P.7</td>
<td>24.3</td>
<td>0.6</td>
<td>55.5</td>
<td>0.0</td>
<td>13.0</td>
<td>6.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Variation Rezirkulationsrate</th>
<th>H₂R</th>
<th>O₂</th>
<th>N₂</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.1</td>
<td>23.5</td>
<td>0.5</td>
<td>58.0</td>
<td>0.0</td>
<td>10.4</td>
<td>7.3</td>
</tr>
<tr>
<td>R.2</td>
<td>23.8</td>
<td>0.5</td>
<td>57.4</td>
<td>0.0</td>
<td>10.8</td>
<td>7.2</td>
</tr>
<tr>
<td>R.3</td>
<td>24.1</td>
<td>0.6</td>
<td>56.7</td>
<td>0.0</td>
<td>11.3</td>
<td>7.1</td>
</tr>
<tr>
<td>R.4</td>
<td>24.5</td>
<td>0.6</td>
<td>55.7</td>
<td>0.0</td>
<td>11.7</td>
<td>7.2</td>
</tr>
<tr>
<td>R.5</td>
<td>23.9</td>
<td>0.6</td>
<td>56.1</td>
<td>0.0</td>
<td>12.2</td>
<td>6.9</td>
</tr>
<tr>
<td>R.6</td>
<td>25.1</td>
<td>0.6</td>
<td>54.3</td>
<td>0.0</td>
<td>12.8</td>
<td>6.9</td>
</tr>
<tr>
<td>R.7</td>
<td>25.4</td>
<td>0.6</td>
<td>53.6</td>
<td>0.1</td>
<td>13.0</td>
<td>7.1</td>
</tr>
<tr>
<td>R.8</td>
<td>25.7</td>
<td>0.6</td>
<td>53.1</td>
<td>0.1</td>
<td>13.5</td>
<td>6.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Variation Brennstoff</th>
<th>H₂R</th>
<th>O₂</th>
<th>N₂</th>
<th>CH₄</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>W4030</td>
<td>29.5</td>
<td>0.8</td>
<td>47.8</td>
<td>0.1</td>
<td>10.2</td>
<td>11.6</td>
</tr>
<tr>
<td>W4035</td>
<td>30.4</td>
<td>0.7</td>
<td>46.6</td>
<td>0.0</td>
<td>11.1</td>
<td>11.2</td>
</tr>
<tr>
<td>W4038</td>
<td>34.3</td>
<td>0.6</td>
<td>41.9</td>
<td>0.1</td>
<td>11.1</td>
<td>12.0</td>
</tr>
<tr>
<td>W5030</td>
<td>33.6</td>
<td>0.7</td>
<td>43.2</td>
<td>0.1</td>
<td>8.9</td>
<td>13.5</td>
</tr>
<tr>
<td>W5035</td>
<td>29.0</td>
<td>0.8</td>
<td>48.7</td>
<td>0.0</td>
<td>9.0</td>
<td>12.5</td>
</tr>
<tr>
<td>W5040</td>
<td>24.8</td>
<td>0.9</td>
<td>53.8</td>
<td>0.0</td>
<td>8.7</td>
<td>11.9</td>
</tr>
<tr>
<td>W6035</td>
<td>27.4</td>
<td>1.4</td>
<td>51.1</td>
<td>0.0</td>
<td>6.7</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Temperatur am Reformerauslass in der Leistungsvariation

![Diagramm zur Temperatur am Reformerauslass in der Leistungsvariation](image1)

Temperatur am Reformerauslass in der Lambdavariation

![Diagramm zur Temperatur am Reformerauslass in der Lambdavariation](image2)
Anhang

Startbrenner Aquanol 70/30 (5kW)

\[\text{massflow air} / \text{Nm/min} \quad \text{T1} / \text{°C} \quad \text{T2} / \text{°C} \quad \text{T3} / \text{°C} \quad \text{T4} / \text{°C} \quad \text{T5} / \text{°C} \quad \text{fuel} / \text{ml/min} \]