Erste Ergebnisse des neuen Hochtemperatur-Konfokalmikroskops am Lehrstuhl für Metallurgie

Christian Bernhard*, Siegfried Schider**, Axel Sormann***, Guangmin Xia und Sergiu Ilie****

*Lehrstuhl für Metallurgie, Montanuniversität Leoben, Leoben / Österreich
** Materials Center Leoben Forschung GmbH, Leoben / Österreich
*** Voestalpine Stahl Donawitz GmbH & Co KG, Leoben / Österreich
**** Voestalpine Stahl GmbH, Linz / Österreich

Eingegangen am 5. April 2011; angenommen am 18. April 2011

First Results of the High-Temperature Laser Scanning Confocal Microscope at the Montanuniversität Leoben

Abstract: The in-situ observation of metallurgical processes at temperatures up to 1700°C inside a mirror furnace with a laser scanning confocal microscope becomes more and more a standard tool for efficient steel research. Within the framework of a COMET K2-project the Materials Center Leoben acquired a microscope system. The system is installed at the Chair of Metallurgy and one of only three systems in Europe today. The article describes the principles and potential of method for steel research and presents selected examples for possible investigations from literature and some first own results. The focus lays on the behavior of nonmetallic inclusions in liquid steels and slags, processes related to solidification and phase transformations in the solid state. Other applications will be briefly mentioned.

1. Einleitung

Erste Veröffentlichungen über die Anwendung der Laser-Scanning-Konfokal-Mikroskope mit infrarotbeheizter Hoch-temperaturkammer (HT-LSM) für metallurgische Fragestellungen erschienen in der zweiten Hälfte der 1990er-Jahre1-4. Ausgehend von Japan, verbreitete sich die Methode vor allem in Asien (Japan, Korea und später China). In den USA, in Australien und in Europa sind die Geräte nur in beschränkter Zahl im Einsatz.

Der vorliegende Artikel beschreibt die Methode und zeigt Anwendungsbeispiele aus der Literatur sowie Ergebnisse aus ersten, eigenen Arbeiten.

2. Funktionsweise von infrarotbeheizter Hochtemperaturkammer und Laser-Scanning-Konfokal-Mikroskop

Eine weitere Limitierung ist die Kontrasterstellung auf selbstleuchtenden Proben, da sich das charakteristische Spektrum glühender Körper mit zunehmender Temperatur dem der Standardbeleuchtungen von Mikroskopen annähert.

Die Kombination eines Laser-Scanning-Konfokal-Mikroskops mit einer infrarotbeheizten Hochtemperaturkammer eröffnet neue Möglichkeiten:

- Die maximale Beobachtungstemperatur ist nur durch das verwendete Thermoelement limitiert und liegt in der Standardkonfiguration bei 1700 °C. Der Infrarotofen wird gekühlt, das thermische Belastungsgrad für die Ofen kammer durch die Strahlungsquelle ist zudem gering.
- Der maximale Probendurchmesser beträgt 7 mm bei einer Höhe von 2 mm. Die geringen Massen von Probenhalter und Tiegeln in Verbindung mit der Maximallasten der verwendeten Halogenlampe von 1500 Watt ermöglichen Heizraten von 1200 °C/min. Die Kühlrate beträgt in der Standardbetriebsweise maximal 1000 °C/min, wobei die Möglichkeit besteht, die Kühlrate durch Aufblasen von Helium weiter zu erhöhen.

Der Betriebsbereich der Hochtemperaturkammer erlaubt es somit, fast alle für die Untersuchung von Stahlerstellungs- und -verarbeitungsprozessen relevanten Temperaturzonen zu durchfahren; ein anschaulicher Überblick über veröffentlichte Arbeiten findet sich in.

und Platin verwendet, prinzipiell sind jedoch alle keramischen und metallischen Tiegelmaterialien verwendbar. Die Temperatur wird in der Standardkonfiguration mit einem Thermoelement gemessen, das an der Unterseite des Probenhalters befestigt ist. Diese Anordnung führt auch zu einem Temperaturunterschied zwischen Probenoberfläche und Thermoelement, was eine sorgfältige Referenzierung der Temperaturmessung erfordert.

Abb. 3: Geöffnete Probenkammer von oben

In Abb. 3 ist die geöffnete Probenkammer von oben dargestellt. Am oberen Bildrand ist das Objektiv des Mikroskopes erkennbar, die oben gelegene Öffnung der Hochtemperaturkammer ist während des Betriebs mit einem Quarzglas verschlossen. Auch die Goldbeschichtung an der Innenseite des Ofens ist erkennbar. Abbildung 4 zeigt schließlich eine Detailaufnahme des Probenhalters mit darauf ruhendem Al_2O_3-Tiegel und einer Stahlprobe.

Teil des Gesamtsystems ist eine Software, welche die Vorgabe der Versuchsparameter (z. B. Aufheizzyklus) und gleichzeitig die Ausgabe der aufgezeichneten Filme und Bilder erlaubt. Der Versuchsablauf ist weitgehend automatisiert, aber auch die händische Temperaturführung ist möglich. Dies ist eine wichtige Voraussetzung für die sogenannte „Concentric Solidification“- Methode, bei der die Erstarrungssfront durch genaue händische Temperaturführung in einer festen Position gehalten wird.

Abb. 4: Probenhalter mit Tiegel und Probe

3. Untersuchungen im System flüssiger Stahl/nichtmetallischer Einschluss/Schlacke

Die Autoren beobachteten, dass sich feste Aluminate, Calzium-Aluminate und Alumina-Silikate über Entfernungen von bis zu 100 µm aufgrund von Kapillarkräften wechselseitig anziehen und Cluster bilden, während die Anziehungskraft zwischen flüssigen Einschlüssen im System $\text{CaO-}\text{Al}_2\text{O}_3-\text{SiO}_2$ unabhängig von der Zusammensetzung der Stahlschmelze, gering ist. Dieses Verhalten ist bestimmend für die Neigung zur Vergrößerung der nichtmetallischen Einschlüsse durch Kollision und nachfolgende Agglomeration und lässt Schlüsse auf das Abscheidungsverhalten, die Bildung makroskopischer Einschlüsse und die Cloggingneigung von Stählen zu. Bestätigt wurden diese Ergebnisse auch durch spätere Untersuchungen an Mangan-Silikaten.

Wie in Kapitel 4 diese Beiträge gezeigt werden wird, eignet sich die Methode auch zur Beobachtung der Erstarrung
von Stahl des Verhaltens nichtmetallischer Einschlüsse an der Phasengrenze Fest/Flüssig und zum Studium der Veränderung der Einschlüsse während bzw. nach der Erstarrung3,10-12.

Shibata et al.3 zeigten beispielsweise, dass für das Einschließen („Engulfment“) von nichtmetallischen Partikeln durch eine sich bewegende Erstarrungsfront die Größe der Einschlüsse und die Wachstumsgeschwindigkeit ausschlaggebend sind. Je größer die Wachstumsgeschwindigkeit und je größer die Einschlüsse, desto leichter werden sie von der Erstarrungsfront eingeschlossen.

Wang et al.11 beobachteten das Aufwachsen von CaS auf Oxide im System CaO-Al\textsubscript{2}O\textsubscript{3}. Sie konnten zeigen, dass flüssige Calciumaluminate kaum eine Anziehungs Kraft aufeinander ausüben, jedoch im Zuge der Erstarrung zwischen dem Stahl gelöst und sich im Zuge der Erstarrung anreichenden Schwefel und Aluminium im Stahl reagieren und sich in Größe und Zusammensetzung verändern. Das Ergebnis sind mehrphasige, oxidisch-sulfidische Einschlüsse, welche auch für großindustriell hergestellte Stähle typisch sind.

Ein wichtiger Teilschritt der Abscheidung nichtmetallischer Einschlüsse aus Stahlschmelzen ist die Aufnahme in die Schlacke bzw. die Auflösung in der Schlacke. Mehrere Untersuchungen beschäftigten sich mit dem Auflösungsverhalten nichtmetallischer Partikel in flüssigen Schlacken.8,13,14 Abbildung 6 zeigt die Auflösung eines Al\textsubscript{2}O\textsubscript{3}-Partikels in einer CaO-Al\textsubscript{2}O\textsubscript{3}-SiO\textsubscript{2}-Schmelze14. Das ursprünglich 242 µm große Partikel löst sich in rund 1980 s auf. Aus der beobachteten Veränderung der Partikelgröße über die Zeit können Parameter für kinetische Modelle abgeleitet werden.

Ein weiterer interessanter Anwendungsfall für die Hochtemperatur-Laserscanning-Konfokal-Mikroskopie ist das Verhalten von nichtmetallischen Einschlüssen an der Phasengrenze Stahl/Schlacke. Die Grenzfläche zwischen Stahl und Schlacke kann durch eine ausreichend dünne, glasige Schlagkenschicht beobachtet werden. Abbildung 7 zeigt das Verhalten zweier Einschlüsse an der Grenzfläche zwischen flüssigem Stahl und einer 50% CaO-50% Al\textsubscript{2}O\textsubscript{3}-Schlacke16,18. Einschluss A, ein flüssiger Einschluss im System MnO-Al\textsubscript{2}O\textsubscript{3}-SiO\textsubscript{2}, löst sich innerhalb von Sekunden nach dem Erreichen der Grenzfläche auf, während Einschluss B, ein fester Al\textsubscript{2}O\textsubscript{3}-Einschluss, im Beobachtungszeitraum nicht von der Schlacke aufgenommen wird. Auch aus diesen Ergebnissen wurden Parameter für kinetische Modelle abgeleitet.

In Abb. 8 ist ein erstes Ergebnis eigener Untersuchungen dargestellt:17 Einige Al\textsubscript{2}O\textsubscript{3}-Partikel werden in einer 50% CaO-50% Al\textsubscript{2}O\textsubscript{3}-Schlacke aufgelöst. Die Partikel werden bei Raumtemperatur auf eine vorgeschmolzene Schla-
ckenprobe aufgegeben und bis 1200 °C mit einer Aufheizrate von 400 °C/min, anschließend mit 100 °C/min bis 1400 °C erwärmt. Danach wurde die Temperatur der Hoch-temperaturkammer händisch geregelt, um im Bereich besonders interessanter Temperaturen zu bleiben. Das langsame Aufschmelzen der Schlacke ist in der Bildabfolge ebenso zu erkennen wie die schlechte Benetzung der Al2O3-Partikel durch die Schlacke. Erst nach einiger Zeit beginnen sich die Partikel langsam zu lösen und es dauert mehr als 100 Sekunden, bis die Partikel schließlich aufgelöst sind. In zukünftigen Arbeiten werden solche Versuche nach schneller Erwärmung isotherm durchgeführt werden, um Kennwerte für kinetische Modelle zu gewinnen.

Aus den hier angeführten, ausgewählten Untersuchungsbeispielen ist die hohe Potenzial der Methode im Hinblick auf Untersuchungen des Verhaltens nichtmetallischer Einschlüsse in flüssigem Stahl, an der Phasengrenze Stahl/Schlacke sowie in Schlacken zu erkennen.

4. Untersuchungen zur Phasenumwandlung Flüssig/Fest

Abbildung 9 zeigt eine Sequenz von Bildern, die während der Erstarrung eines Stahls mit 0,18 % C entstanden sind: Der erstarrte Bereich im unteren Teil der Bilder mit gut erkennbaren Korngrenzen besteht aus α-Ferrit, auf den im Lauf der Erstarrung Austenit aufwächst. Auch nichtmetallische Einschlüsse sind erkennbar, wobei im rechten Bildteil ein Einschluss von der Erstarrungsfront überwachsen wurde. Zwei Al2O3-Einschlüsse, die von oben ins Bild kommen, werden jedoch nicht von der Erstarrungsfront angezogen.

5. Untersuchung von Phasenumwandlungen im festen Zustand

Abbildung 10: Beginnende Bainitumwandlung eines Stahls mit 0,06 % C
Aber auch spätere Arbeiten widmen sich der Austenit/Ferrit-Umwandlung21,23 bzw. der Entstehung von Ungeleichge wichtsgüßen wie dem Widmannstättenferrit23.

6. Weitere Untersuchungsmöglichkeiten

Bereits einleitend wurde als einer der Vorteile des goldbe schichteten Infrarotofens die Möglichkeit genannt, nicht nur unter inert, sondern auch unter oxidierender und reduzierender Atmosphäre zu arbeiten. An dieser Stelle seien nur zwei Beispiele für mögliche Untersuchungen genannt:

7. Zusammenfassung und Ausblick

Im Rahmen des COMET K2-Projekts „In-situ observation of metallurgical processes by means of High-Temperature Laser Scanning Confocal Microscopy“ wurde vom Materials Center Leoben ein Laser-Scanning-Konfokal-Mikroskop mit infrarotbeheizter Hochtemperaturkammer angeschafft und am Lehrstuhl für Metallurgie installiert.

Im Rahmen des Projekts sollen Untersuchungen zum Verhalten nichtmetallischer Einschlüsse in Stahl, Schläcken und an der Phasengrenze zwischen Stahl und Schläcke durchgeführt werden. Die Beobachtung der Veränderung der Einschlüsse über die Zeit erlaubt die qualitative Überprüfung thermodynamischer Berechnungen und die quantitative Anpassung kinetischer Modelle.

Die δγ- und γα-Phasenumwandlungen und auch die Bil dung von Ungleichgewichtsphänomen sollen ebenso beobachtet werden wie das Wachstum von Körnern.

Die Möglichkeit der Einstellung oxidierender und reduzierender Atmosphären erlaubt auch die Untersuchung von Hochtemperaturkorrosionsvorgängen und der Reduktion von Einsatzstoffen in Direkt- und Schmelzreduktionsprozessen.

Das vorgestellte HTLSCM-System ist eines von derzeit nur drei Systemen in Europa. Es wird als wertvolles Werkzeug für die Bewältigung der vielfältigen Aufgabenstellungen in der Eisen- und Stahlfertigung dienen. Über die Fortschritte wird laufend berichtet werden.

Literaturverzeichnis

17 Micheli, S., et al.: Thermodynamic and experimental study on the modification of non-metallic inclusions through the contact with CaO-Al2O3-MgO slags. Inclusion Symposium der AISTech 2011, Indianapolis (Ind.), USA, 2–5, Mai 2011.

