Ölimprägnationen im miozänen Mürztal Becken (Norische Senke, Ostalpen)

Oil Shows in the Miocene Mürztal Basin (Noric Depression, Eastern Alps)

Von R. F. SACHSENHOFER, A. BECHTEL, D. REICHENBACHER, R. GRATZER, M. GOLD, J. GOLDBRUNNER*

Abstract

Oil impregnations were recently detected in Neogene sediments in the Mürztal Basin (Noric Depression; Central Alps). Obviously these impregnations are without any economic significance. However, rich inflow of oil has been noted in a nearby coal exploration well in the early 20th century. Thus, the observed impregnations attest an active oil charge in the Central Alps. The main purpose of the present short note is to characterize the composition of the oil and to speculate on its source.

Biomarker data of the oil indicate a vitrunite reflectance of the source rock in the range of 1.1 to 1.2%. To date mature source rocks within or underneath the Mürztal region are unknown. The origin of the oil, therefore, remains enigmatic. Possible source rock candidates include Miocene limnic organic-rich shales of the Noric Depression and deeper (Oligocene?) rocks within or underneath the Alpine nappe stack. However, Miocene rocks can be the source only, if they occur at considerable depth (>2 km), e.g. due to wrenching along the Mur-Mürz fault system and if very high heat flows in Miocene time caused their maturation. In contrast, the concept of a pre-Miocene source rock requires the presence of mature rocks in a depth of less than 6 km and a relatively low Miocene heat flow.

Einleitung

Geologischer Überblick

*Dr. Reinhard F. Sachsenhofer, Dr. Achim Bechtel, Dipl.-Ing. Dosis Reichenbacher, Dr. Reinhard Gratzer, Department Angewandte Geowissenschaften und Geophysik, Montanuniversität Leoben, Leoben, Österreich (E-mail: Reinhard.Sachsenhofer@uni-leoben.ac.at) Mag. Marlies Gold, Dr. Johann Goldbrunner, GES Team, Griesdorf, Österreich (E-mail: goldbrunner@ges-team.at)

0179-3187/08/04 © 2008 URBAN-VERLAG Hamburg/Wien GmbH

ERDÖL ERDÖGAS KOHLE 124, Jg. 2008, Heft 4

Abb. 1 Geologische Übersichtskarten des Untersuchungsgebietes

GEOLOGIE
GEOLOGIE

Abb. 2 Lithologie der Bohrung Mürztal Th 1 mit Bohrlochlogs (γ: Gamalog, R: Widerstandslog), Minerol- ogy und einigen geochemischen Parametern (TOC – organischer Kohlenstoff, S – Schwefel). Beachte: Messwerte unterhalb 100 m Bohrtiefe wurden an ausgelesemdem Probenmaterial be- stimmt und sind nicht für die Gesamtprobe repräsentativ!

Chromatogramme der geäffigten und aromatischen Kohlenwasserstoffe sind im unteren Teil der Abbildung dargestellt, Kreisdiagramme repräsentieren die Zusammensetzung der Extrakte
(Ges. – gesättigte KW, Aro. – aromatische KW, NSO – NSO-Komponenten, Asph. – Asphaltene)

(Erb. 1). Typischerweise umfasst die Fül- lung dieser Pull-apart-Becken fluviale Ba- sisschichten, zum Teil mächtige Kohlefazies und linnische Ablagerungen [7].

Im Bereich des Mürztal Beckens wurde Kohle bei Warberg und Parschlag bis in die 1950er Jahre abgebaut [8]. Die Explorationsbohrung Sölsnitz traf keine ökonomi- sche Kohle an, erbohrte aber zwei Sandstein- horizonte (214,9–228,1 m; 344,6–375,4 m) mit bedeutenden Ölzuflüssen [1].

Die Geothermiebohrung Mürztal Th 1 wur- de 2002/2003 ca. 3 km nordöstlich der Boh- rung Sölsnitz bis zu einer Tiefe von 1.620 m abgeteuft (Abb. 1). Das Bohrprofil umfasst Quarzit (0–25 m), Miozän (25–700 m) und unteres tertiäres Mesozioum (700 m bis Endeute). Innerhalb des Miozäns befindet sich zwischen 105 und 215 m eine Schicht- folge unklarer Zugehörigkeit (siehe unten).

Methodik

Das Bohrklein des miozänen Ab- schnitts der Bohrung Mürztal Th 1 wurde gewaschen und begutachtet. Reprä- sentative Teile des tonig/mergeligen Bohr- kleins des Teufenabschnittes von 25 bis 100 m Tiefe wurden ebenso gepulvert, wie per Hand ausgelesene feinkörnige Gesteinsfrag-
her als jene der Einheit I. Trotzdem kann nicht ausgeschlossen werden, dass die tonigen Fragmente Nachfall aus Einheit I repräsentieren.

- Einheit III (215–515 m) wird von sandigen Sedimenten dominiert. Untergeordnete feinkörnige Lagen treten zwischen 220 und 290 m Tiefe und zwischen 400 und 510 m Tiefe auf. TOC-Gehalte (1,2–1,5 %) und HI-Werte (120–240 mgHC/gTOC) der petrischen Fragmente aus dem höchsten Intervall sind ähnlich wie jene der Einheit II. Die TOC-Gehalte des tieferen Intervalls sind dagegen sehr gering (<0,5 %). Wegen der geringen TOC-Gehalte, sind die genannten HI Werte in diesem Intervall von geringem Nutzen. Die Steigung der Korrelationsgeraden zwischen S2 (pyrolytisierbare Kohlenwasserstoffe) und TOC ([9]) zeigt, dass der «wahren» HI ca. 290 mgHC/gTOC beträgt. Schwefelgehalte zwischen 0,1 und 0,3 % bewirken sehr geringe TOC/Verhältnisse, die für sauerstoffarme Bedingungen sprechen.

- Einheit IV (515–700 m) beinhaltet Kollomere und Sandsteine mit einem gene-
rennel coarsening upward Trend. Sie wird als alluvialer Fächer interpretiert, der me-
sozoides Basenstein überlagert.

Freie Kohlenwasserstoffe

Alle Proben sind unreif (durchschnittlicher Tnmax: 421 °C, Vitrinireflexion: ~0,4 %).

Daher ist ein geringer Produktionsindex (<0,1) zu erwarten. Deutlich höhere Werte zwischen 400 und 510 m Tiefe deutet daher auf migrierte Kohlenwasserstoffe hin. Vermutlich beeinflussen diese Kohlenwasser-
stoffe auch die Tmax Werte, die in diesem Teil der Bohrung unter 400 °C liegen.

Das Gesteinextrakt der Probe aus 510 m Tiefe wurde untersucht um die Herkunft der freien Kohlenwasserstoffe zu studieren. Proben aus 275 m Tiefe (Einheit III) und 75 m Tiefe (Einheit I) wurden für Vergleichszwecke untersucht.

Eine starke Imprägnierung der Probe 510 mit einem reinen Öl wird durch hohe TOC-
normierte Extraktmengen (606 mgHC/gTOC) und hohe relative Anteile an gesä-
tigten Kohlenwasserstoffen indiziert (Abb. 2). Die Fraktion der gesättigten Kohlen-
was-
serstoffe der imprägnierten Probe wird durch kurzketttige (n-C11–13) n-Alkane, Pris-
tan und Phytan dominiert. Die Fraktion der aromatischen Kohlenwasserstoffe wird von Naphthalinen und Phenanthrenen domi-
niert. Basierend auf dem MPI-1 [10] von 1,24, kann auf eine Reife im Bereich einer Vitrinireflexion von 1,15 %Rr geschlossen werden.

Die seichten Proben zeigen signifikant unter-

derschiedliche Chromatogramme. Ihre Ex-
trakte werden durch langkettige n-Alkane, Di- und Tri-terpenoide und Hopanoide domi-
niert. Eine geringfügig größere Menge an kurzkettigen n-Alkanen in der Probe aus 275 m Tiefe resultiert vielleicht von einer schwachen Beeinflussung durch migrierte Kohlenwasserstoffe.

Diskussion

Reife des Muttergesteins und Tiefe der Kohlenwasserstoffbildung

Der MPI-1 weist auf eine thermische Reife des Muttergesteins von ca. 1,15 %Rr. Im Wiener Becken entspricht eine Vigintirefle-
xion von 1,15 % ungefähr einer Tiefe von 5,4 km. Der heutige geothermische Gra-
dient in der Mürztal Bohrung (25 °C/km) ist ähnlich oder etwas geringer als im Wiener Becken (29 ± 3 °C/km). Basierend auf den heutigen thermischen Verhältnissen, sollte das Muttergestein daher in mehr als 5 km Tiefe liegen.

Der miozäne Wärmefluss war jedoch ent-
lang der Norischen Senke zumindest lokal deutlich erhöht und erreichte Werte >200 mW/m² in ihrem westlichsten Ab-

Abb. 3 Profil durch den Nordteil der Alpen (verändert nach [23]). Die Lage des Profils ist in Abb. 1 dar-

ge stellt. Das Rechteck unterhalb der Bohrung Mürztal Th 1 bezeichnet das Tiefenintervall, aus dem die beobachteten Ölimprägnationen stammen.

Abb. 4 Korrelationsdiagramme, die Biomarkerverhältnisse unterschiedlicher Muttergesteine und Öle [7, 12, 21, 22] mit jenen der Ölimprägnation im Mürztal vergleichen. a–c) Pristan/n-C17, gegen Phytan/n-C18 [14, 15], d) Dreiecksdigramm der Stereanverteilung.
Mögliche Muttermgesteine
Miozän: Petrascheck vermutete, dass das Öl «eine Art Tieftemperaturteuer aus Braunkohlen oder Brandschieferschichten» sei [1]. Biomarker in Extrakten miozäner Kohlen und organischer, lithischer Sedi-
sam mit jenen aus der Bohrung Mürztal Th 1 eingetragen (Abb. 4a). Das Diagramm ist für Öl-Muttergesteinskorrelationen geeignet, weil es Informationen über Biodegradation, Maturität und Ablagerungsmilieu bietet [14, 15]. Nach Abb. 4a könnten die lithischen Pelite bei entsprechender Reife das Mutter-
gestein für das beobachtete Öl darstellen, die Kohlen scheideten hingegen aus.
Steen-Verhältnisse wurden nur für Pelit-Pro-
bében aus dem Fohsfordner Becken quantifi-
ziert. Diese Verhältnisse unterscheiden sich von jenen der Olimpraßung (Abb. 4d). Trotzdem kann eine Herkunft aus reifen mio-
zänen Peliten nicht ausgeschlossen werden. Die thermische Reife der miozänischen Schich-
ten ist allerdings viel zu gering. Mit Ausnahme
10.25 %R in der westlichsten Norischen Serie (Lage sie-
he Insert in Abb. 1b), schwankt die Vitrinitre-
flexion der miozänen Schichten zwischen 0,5
warmer Flüssigkeiten im Bereich der Zentralalpen an. Die Vitrinitreflexi-
on des Muttergesteins beträgt ca. 1,15 %R. Bis heute sind keine reinen Muttergesteine im Bereich des Mürztals bekannt. Der
Ursprung des Öls bleibt daher unklar.
Mögliche Muttermgesteine umfassen miozäne Sedimente der Norischen Senke, sowie tiefe-
re (oligozänen?) Schichten innerhalb oder un-
terhalb des alpinen Deckenstapels. Miozäne Schichten können aber nur dann die Quelle für das Öl sein, wenn sie sehr tief (>2 km) verankert sind (z. B. aufgrund von Einklem-
menentlang des Mur-Mürz-Störungsstei-
syms) und im Miozän aufgrund erhöhter Wärmeleistungen aufgeheizt wurden. Das Kon-
zept eines vor-miozänen Muttergesteins, ver-
langt die Präsenz reifer Sedimente in einer Tiefe von weniger als 6 km (und einen relativ geringen miozänen Wärmefluss).

Schlussfolgerungen
Die Autoren bedanken sich bei Prof. Wessely für anre-
gende Diskussionen. Die Untersuchungen wurden vom Land Steiermark im Rahmen des Projektes «Wissen-
schaftliche Auswertung der geologisch-geophysikali-
sehen Ergebnisse der Bohrung Mürztal Th 1» fi-
nanziert unterstützt.

Literatur
[1] Petrascheck, W.: Kohlengesteine der österreichi-
11.2.1926/29, 484 S.
[2] Brix, F.: Kohlenwasserstoffanziehen in Öster-
[4] Straus, P. H.; Wageck, M.; Decker, K.; Sach-
[5] Gruber, W.; Sachsenhofer, R. F.; Koller, N.; De-
cker, K.: The architecture of the intramontan"Trefachl pull- apart basin inferred from geophys-
[6] Sachsenhofer, R. F.; Kuhlemann, J.; Reischa-
bencher, D. (2001) Die Miozän der österreichischen Nori-
sehen Senke, in: G. M. Landl (ed.) Arbeitssta-
[7] Sachsenhofer, R. F.; Bechtel, A.; Reischan-
bencher, D.; Weiss, A.: Evolution of lacustrine sys-
[9] Langford, P. F.; Valleron, M.-M.: Interpre-
ting Rock-Eval pyrolysis data using graphs of py-
ene Index (MP). A maturity parameter based on aromatic hydrocarbons. In: Björn, M. (Hrsg.) Ad-
[13] Sachsenhofer, R. F.: Das Inhaltbildungs im Jung-
tertiär der Norischen Senke (Östliche Zentralal-
[14] Conran, J.; Cassou, A.: Properties of gases and petroleum liquids derived from terrestrial ke-
[17] Heinze, K.; Koller, F.; Rantitsch, G.; Deckers, E.; Höck, V.; Neubauer, F.; Schuster, R.: Alpine me-
tamorphism of the Eastern Alps. Schweiz. Min-
[19] Rantitsch, G.; Sachsenhofer, R. F.; Hasenberg, C.; Rusegger, B.; Rainer, T.: Thermal evolution of an extensional detachment as constrained by organic metamorphic data and thermal mode-
tal extension in a convergent orogen. Tectono-
[21] Sachsenhofer, R. F.; Bechtel, A.; Kuffner, T.; Rai-
er, T.; Gratzer, R.; Sauer, R.; Sperl, H.: Deposi-
tional environment and source potential of Jurass-
ic coal-bearing sediments (Freistetten Formation; Höflein gas-condensate field; Austria). Petrol-
reicht.